News | Magnetic Resonance Imaging (MRI) | September 15, 2022

New research closes the gap between traditional and deep learning methods 

University of Minnesota Twin Cities researchers have found a way to improve the performance of traditional Magnetic Resonance Imaging (MRI) reconstruction techniques, allowing for faster MRIs without relying on the use of newer deep learning methods. Credit: Intelligent Medical Imaging and Image Processing Lab, University of Minnesota

University of Minnesota Twin Cities researchers have found a way to improve the performance of traditional Magnetic Resonance Imaging (MRI) reconstruction techniques, allowing for faster MRIs without relying on the use of newer deep learning methods. Credit: Intelligent Medical Imaging and Image Processing Lab, University of Minnesota 


September 15, 2022 — University of Minnesota Twin Cities scientists and engineers have found a way to improve the performance of traditional Magnetic Resonance Imaging (MRI) reconstruction techniques, allowing for faster MRIs to improve healthcare. 

The paper is published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), a peer-reviewed, multidisciplinary, high-impact scientific journal. 

“MRIs take a long time because you’re acquiring the data in a sequential manner. You have to fill up the frequency space of your image in a successive manner,” explained Mehmet Akcakaya, the Jim and Sara Anderson Associate Professor in the University of Minnesota Department of Electrical and Computer Engineering and senior author of the paper. “We want to make MRIs faster so that patients are there for shorter times and so that we can increase the efficiency in the healthcare system. This paper explores a way of doing this while making sure that we maintain a good performance.” 

For the last decade or so, scientists have been making MRIs faster using a technique called compressed sensing, which uses the idea that images can be compressed into smaller sizes, akin to zipping a .jpeg on a computer.  

More recently, researchers have been looking into using deep learning, a type of machine learning, to speed up MRI image reconstruction. Instead of capturing every frequency during the MRI procedure, this process skips over frequencies and uses a trained machine learning algorithm to predict the results and fill in those gaps.  

Many studies have shown deep learning to be better than traditional compressed sensing by a large margin. However, there are some concerns with using deep learning—for example, having insufficient training data could create a bias in the algorithm that might cause it to misinterpret the MRI results. 

Using a combination of modern data science tools and machine learning ideas, the University of Minnesota Twin Cities researchers have found a way to fine-tune the traditional compressing method to make it nearly as high-quality as deep learning. 

Akcakaya said this finding provides a new research direction for the field of MRI reconstruction. 

“What we’re saying is that there’s a lot of hype surrounding deep learning in MRIs, but maybe that gap between new and traditional methods isn’t as big as previously reported,” Akcakaya said. “We found that if you tune the classical methods, they can perform very well. So, maybe we should go back and look at the classical methods and see if we can get better results. There is a lot of great research surrounding deep learning as well, but we’re trying to look at both sides of the picture to see where we can find the best performance, theoretical guarantees, and stability.” 

For more information: https://cse.umn.edu/


Related Content

News | Radiology Business

February 2, 2023 — Five additional imaging centers across Allegheny Health Network (AHN) have been recognized by the ...

Time February 02, 2023
arrow
News | Radiation Oncology

February 2, 2023 — The V Foundation, a top cancer research charity, has announced the establishment of a new grant ...

Time February 02, 2023
arrow
News | Magnetic Resonance Imaging (MRI)

February 1, 2023 — According to an accepted manuscript published in ARRS’ American Journal of Roentgenology (AJR), MRI ...

Time February 01, 2023
arrow
News | MRI Breast

February 1, 2023 — Compared to other common supplemental screening methods, breast MRI was superior at detecting breast ...

Time February 01, 2023
arrow
News | Magnetic Resonance Imaging (MRI)

January 25, 2023 — On November 11th, 2022 at the Southern Hills Hospital in Las Vegas, USA, Robotic Spine Surgeon Dr ...

Time January 25, 2023
arrow
News | Breast Imaging

January 24, 2023 — For patients with cancer, lengthy delays in treatment can decrease their chances of survival. In an ...

Time January 24, 2023
arrow
News | Artificial Intelligence

January 20, 2023 — Artificial intelligence (AI) can reconstruct coarsely-sampled, rapid magnetic resonance imaging (MRI) ...

Time January 20, 2023
arrow
News | Digital Pathology

January 19, 2023 — In an effort to speed up the research study process, Deciphex has announced the rollout of its ...

Time January 19, 2023
arrow
News | Radiology Business

January 18, 2023 — Addressing the growing demand for medical imaging and a shortage of radiologists, Bayer announced the ...

Time January 18, 2023
arrow
Feature | RSNA | By Melinda Taschetta-Millane

The Radiological Society of North America’s (RSNA) 108th Scientific Assembly and Annual Meeting (RSNA22) took place at ...

Time January 16, 2023
arrow
Subscribe Now