News | February 12, 2015

Researcher Improves Near-Term Breast Cancer Detection With Image Analysis

Method fuses image features to detect subtle changes, generate prediction score

mammography, breast cancer, computer aided detection, image analysis

February 12, 2015 — Researchers at the University of Oklahoma have developed an image-analysis technique that is designed to improve breast cancer detection and diagnosis.

Bin Zheng, OU electrical and computer engineering professor and Oklahoma Tobacco Settlement Endowment Trust Cancer Research Scholar, and his research team have developed image processing algorithms to generate quantitative image markers by analyzing multiple digital X-ray images and building statistical data learning-based prediction models. The goal is to develop a new quantitative image analysis method that better predicts cancer risk or cancer prognosis, which ultimately leads to help establish more effective personalized cancer screening and treatment strategies.

For example, to improve efficacy of breast cancer screening, a number of breast cancer risk factors including age, breast density, family cancer history, lifestyle and test results on some common susceptible cancer gene mutations are reviewed. Using these risk factors, several lifetime breast cancer risk assessment models have been developed and applied in epidemiology studies.

“Our study is different. We do not intend to build another lifetime risk model to compete with the existing models. We focus on developing and testing a new risk model to predict whether a woman has high risk of developing breast cancer in a near-term after a negative screening mammography,” Zheng explained.

If successful, the model will help establish a new optimal personalized cancer screening model. As a result, an adaptively adjusted screening frequency and method can be applied to each woman at different time periods.

Zheng and his research team have been working to explore and identify image features and their difference, or asymmetry, between the left and right breasts. The images can be fused to build new risk models to more sensitively detect subtle image changes and/or abnormalities that are likely to lead to the development of mammography-detectable cancer in the next one to three years.

The team first identifies and computes useful image features from the two views of bilateral mammograms of the left and right breasts. Then they train statistical models (i.e., an artificial neural network) to generate a prediction score. The prediction score is the likelihood of a woman developing a “mammography-detectable” breast cancer after having a negative screening mammography examination, or classifying between malignant and benign recalls from suspicious mammograms detected by radiologists. 

The advanced prediction could help the medical community improve cancer screening efforts by focusing on women at greatest risk for developing breast cancer in the near-term and also reducing the number of women harmed from false-positive results. 

“The ultimate goal is to develop a personalized cancer screening,” Zheng explained. “Since cancer development is a progressive process, our new model focuses on detecting this dynamic process from the images and then improving the near-term breast cancer risk stratification among the women who participate in mammography-based breast cancer screening.”

As a result, only the small percentage of women stratified into the group of high risk in near-term should be more frequently screened, while the vast majority of women stratified at average or lower near-term cancer development risk could be screened at longer intervals – for example, every two to five years. This would increase cancer detection rate by focusing radiologists’ attention more on a small fraction of high-risk women by reducing the missed and/or overlooked subtle cancers, while also reducing the annual screening population and associated false-positive recalls among the vast majority of women with low near-term cancer risk.

For more information:

Related Content

Novel Technique May Significantly Reduce Breast Biopsies
News | Breast Biopsy Systems | January 17, 2019
A novel technique that uses mammography to determine the biological tissue composition of a tumor could help reduce...
Digital Mammography Increases Breast Cancer Detection
News | Mammography | January 16, 2019
The shift from film to digital mammography increased the detection of breast cancer by 14 percent overall in the United...
Artificial Intelligence Used in Clinical Practice to Measure Breast Density
News | Artificial Intelligence | January 15, 2019
An artificial intelligence (AI) algorithm measures breast density at the level of an experienced mammographer,...
Sponsored Content | Videos | Breast Imaging | January 11, 2019
Supplemental screening with ABUS helps personalize breast care for women with dense breasts and offers advanced...
Electronic Brachytherapy Effective in Long-Term Study of 1,000 Early-Stage Breast Cancers
News | Brachytherapy Systems, Women's Healthcare | January 07, 2019
Breast cancer recurrence rates of patients treated with intraoperative radiation therapy (IORT) using the Xoft Axxent...
Breast Cancer Patients Have Less Heart Damage With Heart Drug and Trastuzumab
News | Cardio-oncology | January 03, 2019
Breast cancer patients who take a heart drug at the same time as trastuzumab have less heart damage, according to a...
Opto-Acoustic Imaging Helps Differentiate Breast Cancer Molecular Subtypes
News | Ultrasound Women's Health | December 20, 2018
Seno Medical Instruments Inc. (Seno Medical) reported results of a study demonstrating that morphologic and functional...
Densitas Enters Platform Partnership With Blackford
News | Breast Density | December 19, 2018
Breast imaging analytics company Densitas Inc. announced the signing of a new Alliance Partner Agreement with Blackford...
Axillary Radiotherapy and Lymph Node Surgery Yield Comparable Outcomes for Breast Cancer
News | Radiation Therapy | December 18, 2018
Early-stage breast cancer patients with cancer detected in a sentinel lymph node biopsy had comparable 10-year...
Videos | Artificial Intelligence | December 13, 2018
ITN Editor Dave Fornell and ITN Contributing Editor Greg Freiherr share their insights on the vendors showing...