News | November 11, 2013

Rapid Prototyping From CT Scan Recreates the Face of a 2,000 Year-Old Mummy

ct systems advanced visualization
November 11, 2013 — The Technology House (TTH), a single-source provider of custom plastic and metal prototypes and production parts, has used a rapid prototyping process to help recreate the face of a 2,000-year-old mummy, allowing the Ohio Historical Society to learn as much as possible about the mummy’s past.
 
The mummy and its coffin were donated to the Ohio Historical Society in 1926. As a way for people to identify with the mummy as a person, curators recently named her “Amunet,” which means “the hidden one.” The society wanted to find out more about her life and in this endeavor partnered with the Department of Radiology at The Ohio State University Wexner Medical Center, which scanned the mummy with its computed tomography (CT) scanner. The CT scan revealed that the mummy had lived a full and comfortable life, which was unusual for the time period of 830 B.C. She had a symmetrical face and very straight teeth with only one being chipped. She was 5 feet 2 inches tall and was between 35 and 45 years old when she died, apparently of natural causes.
 
Although the scan provided a lot of information, the curators still wanted to see Amunet’s face as it looked when she was still alive. TTH, along with Case Western Reserve University, used the CT scan images to create a 3-D computer-aided design (CAD) model of the mummy’s skull. TTH then used the CAD model in a rapid prototyping process called stereolithography (SLA) to build an accurate replica of the mummy’s skull and mandible. SLA builds 3-D replicas, or prototypes, of an object using a vat of liquid ultraviolet-curable photopolymer resin and an ultraviolet laser to form one thin layer at a time. TTH has also used SLA to build 3-D prototypes of body parts for the medical industry. Doctors and surgeons use such models for practicing on new equipment, practicing for difficult surgeries or to reduce surgical times.
 
For more information: www.tth.com

Related Content

icobrain cva allows the quantitative assessment of tissue perfusion by reporting the volume of core and perfusion lesion by quantifying Tmax abnormality and CBF abnormality together with the mismatch volume and ratio
News | Artificial Intelligence | February 23, 2021
February 23, 2021 — icometrix, world leader in imaging...
Dr Sahar Saleem placing the mummy in the CT scanner

Dr. Sahar Saleem placing the mummy in the CT scanner. Image courtesy of Sahar Saleem

News | Computed Tomography (CT) | February 22, 2021
February 22, 2021 — Modern medical technology is helping scholars tell a more nuanced story about the fate of an anci
Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne
Unhealthy lifestyles, various diseases, stress, and aging can all contribute to an imbalance between the production of ROS and the body's ability to reduce and eliminate them. The resulting excessive levels of ROS cause "oxidative stress".

Unhealthy lifestyles, various diseases, stress, and aging can all contribute to an imbalance between the production of ROS and the body's ability to reduce and eliminate them. The resulting excessive levels of ROS cause "oxidative stress". Graphic courtesy of National Institutes for Quantum and Radiological Science and Technology

News | Magnetic Resonance Imaging (MRI) | February 10, 2021
February 10, 2021 — Oxygen is essential for human life, but within the body, certain biological environmental conditi
Materialise engineers coordinated the development of a surgical plan and created an on-screen 3D model based on CT-scans.

Materialise engineers coordinated the development of a surgical plan and created an on-screen 3D model based on CT-scans.

Feature | Medical 3-D Printing | February 03, 2021
Three-dimensional technologies, developed by Materialise
Kaplan–Meier curves for the high-risk individuals and the ones with low or medium risk according to AI-severity. The threshold to assign individuals into a high-risk group was the 2/3 quantile of the AI-severity score computed for patients of the KB development cohort. a Kaplan–Meier curves were obtained for the 150 leftover KB patients from the development cohort. b Kaplan–Meier curves were obtained for the 135 patients of the IGR validation cohort. p-values for the log-rank test were equal to 4.77e–07 (KB

Kaplan–Meier curves for the high-risk individuals and the ones with low or medium risk according to AI-severity. The threshold to assign individuals into a high-risk group was the 2/3 quantile of the AI-severity score computed for patients of the KB development cohort. a Kaplan–Meier curves were obtained for the 150 leftover KB patients from the development cohort. b Kaplan–Meier curves were obtained for the 135 patients of the IGR validation cohort. p-values for the log-rank test were equal to 4.77e–07 (KB) and 4.00e–12 (IGR). The two terciles used to determine threshold values for low-, medium-, and high-risk groups were equal to 0.187 and 0.375. Diamonds correspond to censoring of patients who were still hospitalized at the time when data ceased to be updated. The bands correspond to the sequence of the 95% confidence intervals of the survival probabilities for each day. KB Kremlin-Bicêtre hospital, IGR Institut Gustave Roussy hospital. Courtesy of Nature Communications.

News | Coronavirus (COVID-19) | February 01, 2021
February 1, 2021 — COVID-19...