News | March 09, 2015

Radiation plus ipilimumab shrank tumors in some patients, but preclinical data suggests adding second immunotherapy will elicit response in resistant patients

March 9, 2015 — Treating metastatic melanoma with radiation therapy and two immunotherapies targeting the CTLA4 and PD-1 pathways could elicit an optimal response in more patients, boosting the immune system’s attack on the disease, suggests a new study. The study, from a multidisciplinary team of researchers from Penn’s Abramson Cancer Center, was published in Nature.

The study reports for the first time on the response and resistance to radiation combined with ipilimumab (an antibody against CTLA4) in both patients and mice.

In the phase I clinical study, known as the “RadVax” trial, the team found that combining ipilimumab with radiation was safe and shrank tumors in a subset of 22 metastatic melanoma patients (18 percent). The concurrent mouse study shed light on a mechanism of resistance, known as the PD-L1 pathway, found in many patients whose cancers progressed. This suggests that an antibody against PD-L1 or its partner PD-1 is an ideal third treatment to improve response and immunity.

“These new immunotherapies are potent treatment options that have generated a lot of excitement in the past few years, but we know that many patients fail to respond, underscoring the need to further improve the drugs’ abilities,” said senior author Andy J. Minn, assistant professor of radiation oncology at the Perelman School of Medicine at the University of Pennsylvania. “Anecdotally, we know that combining radiation with immunotherapy can be powerful, so we were very motivated to move forward with both a clinical trial to demonstrate that this combination is a promising route to pursue and with laboratory studies to understand why response happens and why it does not.”

Ipilimumab is a U.S. Food and Drug Administration (FDA)-approved, anti-CTLA4 antibody that serves to lift a break on the immune system, allowing T cells to infiltrate and attack tumor cells. Antibodies that block the PD-L1 pathway, which cancer cells use to hide from the immune system, include pembrolizumab or nivolumab, anti-PD-1 immunotherapies approved by the FDA recently.

It is believed that adding radiation results in a synergistic attack, turning the destroyed tumor cells as a vaccine against the cancer. Irradiated tumor cells are believed to release antigens that help train the immune system to fight other tumors in the body. The treatment has earned the name “RadVax” because of its vaccine-like qualities.

The impetus for the Penn phase I clinical study was a metastatic melanoma patient in his early 50s who was treated with an anti-CTLA4 antibody at Penn Medicine by co-author Lynn M. Schuchter, M.D., chief of hematology/oncology at Penn’s Abramson Cancer Center. While on an anti-CTLA4 antibody, the patient’s condition worsened, and he required palliative radiation therapy. Over the course of many months after both modalities and no further treatment, however, his metastatic cancer started to resolve, and he was eventually deemed nearly cancer free.

Attempting to mirror his treatment experience, the researchers recruited 22 previously treated and untreated stage IV melanoma patients for a phase I clinical trial that investigated the use of both modalities. The group received stereotactic body radiation therapy (SBRT) to a single tumor followed three to five days later with ipilimumab every three weeks for four cycles.

The team found that 18 percent of patients had partial response in unirradiated tumors, 18 percent had stable disease and 64 percent had progressive disease. The median progression free survival and overall survival for patients was 3.8 months and 10.7 months with a median follow up of 18.4 and 21.3 months, respectively. The group’s overall survival rate was 35 percent. A past, phase III study showed an overall survival rate of 20 percent in patients on ipilimumab alone.

The response in mice was met with similar results: 17 percent of mice responded to the combination of radiation therapy and an anti-CTLA4 antibody.

To better understand the mechanism of resistance observed in many of the patients, the researchers turned to the mice. Mouse tumors that relapsed after radiation and anti-CTLA4 revealed that PD-L1, known to inhibit the activation of T cells, was among the top upregulated genes that made up a “resistance gene signature,” the authors reported. Indeed, mice with tumors showing high PD-L1 had disabled T cells and all failed treatment.

In mice, inhibiting PD-L1 restored both T cell function and tumor response to radiation therapy and anti-CTLA4, increasing survival to 60 percent. Going full circle back to the clinical trial, those patients with tumors showing high PD-L1 also had disabled T cells and all failed treatment, but patients with low PD-L1 tumors had 50 percent survival. The authors conclude that PD-L1 on tumor cells can be a dominant resistance mechanism to radiation therapy and ipilimumab.

“Understanding resistance is very important. Although outcome can be improved when more therapies are combined, risk of side effects can increase. Precision medicine requires knowing when to give more and what to give,” said Minn.

For more information: www.med.upenn.edu


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Radiation Oncology

July 11, 2024 — The American Society for Radiation Oncology (ASTRO) issued the following statement from Jeff M ...

Time July 11, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 09, 2024
arrow
News | Radiation Oncology

July 9, 2024 — Insights from the latest Mordor Intelligence report, “Radiotherapy Market Size & Share Analysis - Growth ...

Time July 09, 2024
arrow
News | Prostate Cancer

July 5, 2024 — Lantheus Holdings, Inc., a leading radiopharmaceutical-focused company committed to enabling clinicians ...

Time July 05, 2024
arrow
News | Radiology Business

July 3, 2024 — The American Society of Radiologic Technologists has launched the BeRAD Professionalism Award to ...

Time July 03, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | Artificial Intelligence

June 11, 2024 — A new study led by researchers at Emory AI.Health, published in the Journal of Computers in Medicine and ...

Time June 11, 2024
arrow
News | Breast Imaging

June 7, 2024 — Scholars and studies funded by Susan G. Komen(R), the world’s leading breast cancer organization ...

Time June 07, 2024
arrow
News | Radiopharmaceuticals and Tracers

June 7, 2024 — Shine Technologies, LLC, a pioneer in next-generation fusion-based technology, today announced a new ...

Time June 07, 2024
arrow
Subscribe Now