News | April 04, 2014

Radiation Able to Be Securely Stored in Nontoxic Molecule

John M. Tomich Ekaterina Dadachova Clinica Study Radiation Nontoxic Molecules

John Tomich and his research lab team at Kansas State University combined two related sequences of amino acids to form a very small, hollow nanocapsule similar to a bubble.

April 4, 2014 — Researchers have discovered that microscopic "bubbles" developed at Kansas State University are safe and effective storage lockers for harmful isotopes that emit ionizing radiation for treating tumors.

The findings can benefit patient health and advance radiation therapy used to treat cancer and other diseases, said John M. Tomich, a professor of biochemistry and molecular biophysics who is affiliated with the university's Johnson Cancer Research Center.

Tomich conducted the clinical study with Ekaterina Dadachova, a radiochemistry specialist at Albert Einstein College of Medicine in New York, along with researchers from his group at Kansas State University, the University of Kansas, Jikei University School of Medicine in Japan and the Institute for Transuranium Elements in Germany. They recently published their findings in the study "Branched Amphiphilic Peptide Capsules: Cellular Uptake and Retention of Encapsulated Solutes," which appears in the scientific journal Biochimica et Biophysica Acta.

The study looks at the ability of nontoxic molecules to store and deliver potentially harmful alpha emitting radioisotopes — one of the most effective forms of radiation therapy.

In 2012, Tomich and his research lab team combined two related sequences of amino acids to form a very small, hollow nanocapsule similar to a bubble.

"We found that the two sequences come together to form a thin membrane that assembled into little spheres, which we call capsules," Tomich said. "While other vesicles have been created from lipids, most are much less stable and break down. Ours are like stones, though. They're incredibly stable and are not destroyed by cells in the body."

The ability of the capsules to stay intact with the isotope inside and remain undetected by the body's clearance systems prompted Tomich to investigate using the capsules as unbreakable storage containers that can be used for biomedical research, particularly in radiation therapies.

"The problem with current alpha-particle radiation therapies used to treat cancer is that they lead to the release of nontargeted radioactive daughter ions into the body," Tomich said. "Radioactive atoms break down to form new atoms, called daughter ions, with the release of some form of energy or energetic particles. Alpha emitters give off an energetic particle that comes off at nearly the speed of light."

These particles are like a car careening on ice, Tomich said. They are very powerful but can only travel a short distance. On collision, the alpha particle destroys DNA and whatever vital cellular components are in its path. Similarly, the daughter ions recoil with high energy on ejection of the alpha particle — similar to how a gun recoils as it is fired. The daughter ions have enough energy to escape the targeting and containment molecules that currently are in use.

"Once freed, the daughter isotopes can end up in places you don't want them, like bone marrow, which can then lead to leukemia and new challenges," Tomich said. "We don't want any stray isotopes because they can harm the body. The trick is to get the radioactive isotopes into and contained in just diseases cells where they can work their magic."

The radioactive compound that the team works with is 225Actinium, which on decay releases four alpha particles and numerous daughter ions.

Tomich and Dadachova tested the retention and biodistribution of alpha-emitting particles trapped inside the peptide capsules in cells. The capsules readily enter cells. Once inside, they migrate to a position alongside the nucleus, where the DNA is.

Tomich and Dadachova found that as the alpha particle-emitting isotopes decayed, the recoiled daughter ion collides with the capsule walls and essentially bounces off them and remains trapped inside the capsule. This completely blocked the release of the daughter ions, which prevented uptake in certain nontarget tissues and protected the subject from harmful radiation that would have otherwise have been releases into the body.

Tomich said that more studies are needed to add target molecules to the surface of the capsules. He anticipates that this new approach will provide a safer option for treating tumors with radiation therapy by reducing the amount of radioisotope required for killing the cancer cells and reducing the side effects caused by off-target accumulation of the radioisotopes.

"These capsules are easy to make and easy to work with," Tomich said. "I think we're just scratching the surface of what we can do with them to improve human health and nanomaterials."

For more information: www.newswise.com/institutions/newsroom/65

Related Content

Videos | Radiation Therapy | August 13, 2018
ITN Editor Dave Fornell takes a tour of some of the innovative new technologies on the expo floor at the 2018 America
Videos | Radiation Therapy | August 13, 2018
A discussion with Mahadevappa Mahesh, MS, Ph.D., FAAPM, FACR, FACMP, FSCCT, professor of radiology and cardiology and
Videos | Proton Therapy | August 10, 2018
A discussion with Matthew Freeman, Ph.D., scientist at Los Alamos National Laboratory, New Mexico.
Videos | Radiomics | August 09, 2018
A discussion with Martin Vallieres, Ph.D., post-doctoral fellow at McGill University, Montreal, Canada.
Videos | AAPM | August 03, 2018
Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke Un...
Videos | Radiation Therapy | August 01, 2018
This is an example of how Cherenkov radiation glow can be collected with image intensifier cameras during radiotherap
Videos | Artificial Intelligence | August 01, 2018
A discussion with Steve Jiang, Ph.D., director of the medical...
Videos | AAPM | August 01, 2018
American Association of Physicists in Medicine (AAPM) President Bruce Thomadsen, M.D., professor of medical physics a
IBA Completes Installation of Two Proteus One Proton Therapy Systems in Japan
News | Proton Therapy | July 30, 2018
IBA (Ion Beam Applications S.A.) announced that they completed the first two installations of the Proteus One proton...
Overlay Init