News | PET-MRI | January 27, 2020

PET/MRI Identifies Notable Breast Cancer Imaging Biomarkers

Biomarkers may support screening and risk-reduction strategies

A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast

A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast. (A) Unenhanced fat-saturated T1-weighted MRI shows extreme amount of FGT (ACR d). (B) Moderate BPE is seen on dynamic contrast-enhanced MRI at 90 s. (C) Mean ADC of breast parenchyma of contralateral breast on diffusion-weighted imaging with ADC mapping is 1.5 × 10?3 mm2/s. (D) On 18F-FDG PET/CT, lesion is not 18F-FDG-avid, and BPU of normal breast parenchyma is relatively high, with SUVmax of 3.2. Photo courtesy of K Pinker, et al., Medical University of Vienna, Vienna, Austria

January 27, 2020 — Researchers have identified several potentially useful breast cancer biomarkers that indicate the presence and risk of malignancy, according to new research published in the January issue of The Journal of Nuclear Medicine. By comparing healthy contralateral breast tissue of patients with malignant breast tumors and benign breast tumors, researchers found that multiple differences in biomarkers can be assessed with PET/MRI imaging, which could impact risk-adapted screening and risk-reduction strategies in clinical practice.

In breast cancer, early detection remains key to improved prognosis and survival. While screening mammography has decreased mortality for breast cancer patients by 30 percent, its sensitivity is limited and is decreased in women with dense breast tissue. "Such shortcomings warrant further refinements in breast cancer screening modalities and the identification of imaging biomarkers to guide follow-up care for breast cancer patients," said Doris Leithner, M.D., research fellow at Memorial Sloan Kettering Cancer Center in New York, N.Y. "Our study aimed to assess the differences in 18F-FDG PET/MRI biomarkers in healthy contralateral breast tissue among patients with malignant or benign breast tumors."

The study included 141 patients with imaging abnormalities on mammography or sonography on a tumor-free contralateral breast. The patients underwent combined PET/MRI of the breast with dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI) and the radiotracer 18F-FDG. In all patients, several imaging biomarkers were recorded in the tumor-free breast: background parenchymal enhancement and fibroglandular tissue (from MRI), mean apparent diffusion coefficient (from DWI) and breast parenchymal uptake (from 18F-FDG PET). Differences among the biomarkers were analyzed by two independent readers.

A total of 100 malignant and 41 benign lesions were assessed. In the contralateral breast tissue, background parenchymal enhancement and breast parenchymal uptake were decreased and differed significantly between patients with benign and malignant lesions. The difference in fibroglandular tissue approached but did not reach significance, and the mean apparent diffusion coefficient did not differ between the groups.

"Based on these results, tracer uptake of normal breast parenchyma in 18F-FDG PET might serve as another important, easily quantifiable imaging biomarker in breast cancer, similar to breast density in mammography and background parenchymal enhancement in MRI," Leithner explained. "As hybrid PET/MRI scanners are increasingly being used in clinical practice, they can simultaneously assess and monitor multiple imaging biomarkers--including breast parenchymal uptake--which could consequently contribute to risk-adapted screening and guide risk-reduction strategies."

For more information: www.snmmi.org

Related Content

A recent study earlier this year in the journal Nature, which included researchers from Google Health London, demonstrated that artificial intelligence (AI) technology outperformed radiologists in diagnosing breast cancer on mammograms
Feature | Breast Imaging | April 06, 2020 | By Samir Parikh
A recent study earlier this year in the journal Nature,
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

Feature | Coronavirus (COVID-19) | April 03, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Feature | Breast Density | April 03, 2020 | By Dayna Williams M.D., Shivani Chaudhry, M.D., and Laurie R. Margolies, M.D.
Breast cancer is the most common cance
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Mammography | March 25, 2020
March 25, 2020 — The...
The 2020 Society of Breast Imaging/American College of Radiology (SBI/ACR) annual symposium has been cancelled, and the event rescheduled for April 8-11, 2020, in Savannah, Ga. #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SBI20
News | Society of Breast Imaging (SBI) | March 16, 2020
March 16, 2020 — The 2020 Society of Breast Imaging/American College of Radiology (...
DBT, sometimes called 3-D mammography, emerged in the last decade as a powerful tool for breast cancer screening

Images in a 57-year-old woman noted to have "good prognosis" invasive cancer detected at digital breast tomosynthesis (DBT) screening. (a) Craniocaudal view of the left breast obtained with the two-dimensional digital mammography (DM) portion of the DM/DBT screening study demonstrates a subtle area of distortion in the medial left breast. (b) Single-slice image from the left craniocaudal DBT portion of the screening study shows an area of bridging distortion (circle). (c) Electronically enlarged image of the area of concern seen on the left craniocaudal view in a single DBT slice as shown in b. (d) Targeted US scan demonstrates two small adjacent irregular solid masses. US-guided core biopsy yielded an invasive carcinoma of the tubular subtype that was estrogen receptor positive, progesterone receptor positive, and human epidermal growth factor receptor 2 negative. The results of the sentinel node biopsy were negative. Image courtesy of the Radiological Society of North America

News | Breast Imaging | March 11, 2020
March 11, 2020 — A new study published in the journal ...
 “Cyclotrons used in Nuclear Medicine Report & Directory, Edition 2020” that describes close to 1,500 medical cyclotrons worldwide
News | Nuclear Imaging | March 10, 2020
March 10, 2020 — MEDraysintell released its new and unique report “...