News | PET-CT | November 15, 2019

PET/CT Plays Role in Lung Adenocarcinoma Management

62-year-old woman with pure ground-glass nodules (GGN). PET/CT fusion image shows pure GGN with tumor maximum standardized uptake value of 2.8 (circle).

62-year-old woman with pure ground-glass nodules (GGN). PET/CT fusion image shows pure GGN with tumor maximum standardized uptake value of 2.8 (circle).

November 15, 2019 — According to an article published ahead-of-print in the February 2020 issue of the American Journal of Roentgenology (AJR), fluorodeoxyglucose PET (FDG PET) can be used to predict the histopathologic subtypes and growth patterns of early lung adenocarcinoma.

“FDG PET, combined with high-resolution CT (HRCT), has value for predicting invasive histopathologic subtypes, but there was no significance for predicting invasive growth patterns,” clarified lead author Xiaoliang Shao from the department of nuclear medicine at Soochow University in Changzhou, China.

Shao and colleagues’ retrospective analysis was conducted on the PET/CT data on ground-glass nodules (GGNs) resected from patients with stage IA lung adenocarcinoma, evaluating the efficacy of PET maximum standardized uptake value (SUVmax) combined with HRCT signs in prediction of histopathologic subtype and growth pattern of lung adenocarcinoma.

Although SUVmax measured significantly higher in GGNs with invasive HRCT signs, the diameter of GGN, as well as the attenuation value differential between ground-glass components and adjacent lung tissues, were independent predictors of FDG uptake by GGNs.

Additionally, SUVmax was higher in invasive adenocarcinoma than in adenocarcinoma in situ (AIS)–minimally invasive adenocarcinoma (MIA), with SUVmax 2.0 the optimal cutoff value for differentiation.

Acinar-papillary adenocarcinoma had a higher SUVmax than lepidic adenocarcinoma, with SUVmax 1.4 the optimal cutoff value for differentiation.

Parameter measurements of pure ground-glass nodules (GGNs) and part-solid GGNs on PET/CT fusion and high-resolution CT (HRCT) images.

62-year-old woman with pure GGN. PET/CT fusion image shows pure GGN with tumor maximum standardized uptake value (SUVmax) of 2.8 (circle).

“In stage IA lung adenocarcinoma characterized by GGNs, the SUVmax of GGNs with invasive CT features was high,” Shao wrote, adding that HRCT can be used in diagnosing the subtypes of lung adenocarcinoma. “However, it cannot be used to differentiate different growth patterns of lung adenocarcinomas.”

As Shao concluded: “The efficacy of FDG PET SUVmax in differentiating lung adenocarcinoma subtypes is similar to that of HRCT signs, however, the diagnostic efficiency of FDG PET combined with HRCT is significantly higher than that of each imaging technique alone.”

For more information: www.arrs.org/

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Chest CT findings of pediatric patients with COVID-19 on transaxial images. (a) Male, 2 months old, 2 days after symptom onset. Patchy ground-glass opacities GGO in the right lower lobe

Chest CT findings of pediatric patients with COVID-19 on transaxial images. Male, 2 months old, 2 days after symptom onset. Patchy ground-glass opacities GGO in the right lower lobe. Image courtesy of Radiology: Cardiothoracic Imaging

News | Coronavirus (COVID-19) | April 06, 2020
April 6, 2020 — Children and teenagers with COVID-19...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Sonogram taken under rib cage shows liver (grey) with curved diaphragm-lung border (white). Arrows point to vertical B lines (white) demonstrating diseased lung tissue. The more B lines the worse the disease. Healing is measured by reduction in the number of B lines.

Sonogram taken under rib cage shows liver (grey) with curved diaphragm-lung border (white). Arrows point to vertical B lines (white) demonstrating diseased lung tissue. The more B lines the worse the disease. Healing is measured by reduction in the number of B lines.

News | Coronavirus (COVID-19) | April 06, 2020
April 6, 2020 — Robert L.
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 U.S. Surgeon General Jerome Adams, M.D., M.Ph demonstrates how the general public can make their own face masks for non-clinical use.

U.S. Surgeon General Jerome Adams, M.D., M.Ph. demonstrates how the general public can make their own face masks for non-clinical use.

News | Coronavirus (COVID-19) | April 04, 2020 | By Melinda Taschetta-Millane
April 4, 2020 — The Centers for Disease Control and Prevention (CDC)
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

Feature | Coronavirus (COVID-19) | April 03, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
Jeannie Danker, M.D. #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Jeannie Danker, M.D. Photo courtesy of The Ohio State University Wexner Medical Center

News | Coronavirus (COVID-19) | April 03, 2020 | By Melinda Taschetta-Millane
April 3, 2020 — The radiology world has lost a dedicated leader due to...
An estimated 44 million people worldwide are currently living with Alzheimer’s disease, the most common form of dementia. About 5.8 million people in the United States live with the disease, where it is the sixth leading cause of death overall. While there is not yet a cure for Alzheimer’s, researchers are working to find treatment options to delay its onset and prevent it from developing.

Image courtesy of Insightec

Feature | Ultrasound Imaging | April 02, 2020 | By Katie Caron
An estimated 44 million people worldwide are currently living with...
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p