News | January 12, 2011

PET Scans Provide Insight into Fever-Induced Epilepsy in Children

January 12, 2011 — Sudden, catastrophic childhood epilepsy is a parent’s worst nightmare, especially in the case of fever-induced refractory epileptic encephalopathy in school-age children (FIRES). While not much is known about the condition, new research published in the January issue of The Journal of Nuclear Medicine shows that positron emission tomography (PET) scans can offer an evaluation of cognitive dysfunction of FIRES, its evolution and further prognosis.

FIRES, a recently named condition, occurs in previously healthy children who, after a brief fever, experience acute seizures that are resistant to medication and last for several weeks. After the seizures stop, children are left with severe cognitive dysfunction, mainly involving language, memory and behavior. The study, “18F-FDG PET Reveals Frontotemporal Dysfunction in Children with Fever-Induced Refractory Epileptic Encephalopathy,” was conducted with eight patients diagnosed with FIRES.

The patients were given a neuropsychologic evaluation, a brain magnetic resonance imaging (MRI) and an 18F-FDG PET scan. Severe cognitive dysfunction was noted, and while the MRI tests showed no abnormalities for the patients, the PET scans reported significant cognitive impairment. Researchers compared the FIRES patients with a pseudo-control group of epilepsy patients with normal MRI and PET scan results. Using statistical parametric mapping, an objective approach to analyzing brain activity, the study exposed that the brain dysfunction was related to the epilepsy in the FIRES patients.

“The fact that the dysfunctional network is superimposed over the epileptic network is a strong argument that FIRES is the cause of cognitive deterioration in these previously normal children. Moreover, localizing such a dysfunction may help to specify the re-adaptation more accurately,” said Catherine Chiron, M.D., Ph.D., pediatric epileptologist and head of the Research Program on Epilepsy at Hospital Necker – Enfants Malades in Paris and one of the authors of the study.

She continued, “These findings may open the way for using 18F-FDG PET more extensively and more accurately in pediatric imaging, as this methodology allows us to investigate not only unilateral, but also bilateral diseases, and to interpret PET images in an objective and sensitive manner.”

Authors of the scientific article include: Michel Mazzuca, Olivier Dulac and Catherine Chiron, Inserm, U663 – University Paris Descartes, and APHP, Neuropediatric Department, Hospital Necker – Enfants Malades, Paris, France; Isabelle Jambaque, Lucie Hertz-Pannier, Viviane Bouilleret, Frederique Archambaud and Sebastian Rodrigo, Inserm, U663 – University Paris Descartes, Paris, France and Verne Caviness, Department of Neurology, Massachusetts General Hospital, Boston, Mass.

For more information: www.snm.org

Related Content

CT Decision Instrument Reliably Guides Pediatric Blunt Trauma imaging Decisions

This is a four-site prospective observational cohort. Image courtesy of Kirsty Challen, B.Sc., MBCHB, MRES, Ph.D., Lancashire Teaching Hospitals, United Kingdom.

News | Clinical Decision Support | July 18, 2018
A new study finds The Pediatric NEXUS Head Computed Tomography (CT) Decision Instrument (DI) reliably identifies blunt...
Study Points to Need for Performance Standards for EHR Usability and Safety
News | Electronic Medical Records (EMR) | July 18, 2018
A novel new study provides compelling evidence that the design, development and implementation of electronic health...
Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

News | Artificial Intelligence | July 17, 2018
A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has...
Study Shows Biomarker Panel Boosts Lung Cancer Risk Assessment for Smokers
News | Lung Cancer | July 16, 2018
A four-protein biomarker blood test improves lung cancer risk assessment over existing guidelines that rely solely upon...
Breast Cancer Follow-up Imaging Varies Widely
News | Breast Imaging | July 13, 2018
July 13, 2018 — Follow-up imaging for women...
Lack of Insurance Coverage Delaying Proton Therapy Clinical Trials
News | Proton Therapy | July 12, 2018
Randomized clinical trials are the gold standard of cancer research and can shed light on whether innovative, new...
Breast Cancer Studies Ignore Race, Socioeconomic Factors
News | Women's Health | July 11, 2018
A new commentary appearing in the July issue of Cancer Causes & Control points to evidence that social factors help...
High-Strength MRI May Release Mercury from Amalgam Dental Fillings
News | Magnetic Resonance Imaging (MRI) | July 05, 2018
Exposure to ultra-high-strength magnetic resonance imaging (MRI) may release toxic mercury from amalgam fillings in...
Ensuring that the FMDS for MRI safety is mounted outside Zone IV provides maximum early warning.

Ensuring that the FMDS for MRI safety is mounted outside Zone IV provides maximum early warning. (Images courtesy of Metrasens)

Feature | Magnetic Resonance Imaging (MRI) | July 03, 2018 | By Tobias Gilk
Nearly every job in the country is subject to certain health and safety regulations. Construction workers must wear...
Overlay Init