News | Digital Pathology | July 16, 2019

Article published in Nature Medicine provides further scientific evidence for deployment of computational decision support systems to improve patient care

Paige Announces Clinical-grade Artificial Intelligence in Pathology

July 16, 2019 — Computational pathology company Paige announced the publication of an article in Nature Medicine describing an artificial intelligence (AI) system for computational pathology that achieves clinical-grade accuracy levels. The paper provides further scientific evidence that pathologists’ work in diagnosing and treating cancer can be complemented and aided through the deployment of computational decision-support systems to improve patient care.

The team of scientists responsible for the work described in the article developed specially-designed deep learning algorithms to build a system that can detect prostate cancer, skin cancer and breast cancer with near-perfect accuracy. These algorithms are based on a vast dataset of nearly 45,000 de-identified, digitized slide images from more than 15,000 cancer patients from 44 countries.

The paper outlines how a series of novel algorithms, created using datasets 10 times larger than those that have been manually curated, performed better and also are more generalizable. The significance of this new development hinges on the fact that curating datasets can be prohibitively expensive and time intensive. By eliminating the need to curate datasets, Paige can now develop many more highly accurate algorithms that can be built into clinical decision support products to help pathologists around the world drive better patient care.

Paige plans to commercialize several of these solutions to address the most pressing needs in pathology to improve patient care. The company has already built on the academic work described in Nature Medicine to develop a clinical product, based on technology currently under review by the U.S. Food and Drug Administration (FDA) as a designated Breakthrough Device, for an intended indication different than the one described in the article.

All data collection, research and analysis for this research was conducted exclusively at Memorial Sloan Kettering (MSK) in New York City. The publication of the study’s findings was the result of collaboration between numerous researchers and clinicians, and made possible by Paige’s partnership with MSK. All data were de-identified and did not contain any protected health information or label text. 

Watch the VIDEO: Integrating Digital Pathology With Radiology

For more information: www.nature.com/nm

Reference

1. Campanella G., Hanna M.G., Geneslaw L., et al. Clinical-grade Computational Pathology using Weakly Supervised Deep Learning on Whole Slide Images. Nature Medicine, July 15, 2019. https://doi.org/10.1038/s41591-019-0508-1


Related Content

News | Ultrasound Imaging

Nov. 12, 2025 — GE HealthCare and DeepHealth, Inc., a wholly owned subsidiary of RadNet, Inc., have announced their ...

Time November 20, 2025
arrow
News | Neuro Imaging

Nov. 19, 2025 — Royal Philips has announced an extended partnership with Cortechs.ai. Together, the companies will ...

Time November 19, 2025
arrow
News | Lung Imaging

Nov. 18, 2025 — Qure.ai has announced a collaboration with Microsoft. Qure.ai will onboard its end-to-end lung cancer ...

Time November 18, 2025
arrow
News | Breast Imaging

Nov. 17, 2025 — RadNet, Inc. and its wholly owned subsidiary, DeepHealth have announced results from the largest real ...

Time November 17, 2025
arrow
News | Radiology Business

Nov. 13, 2025 — Covera Health recently announced that Advanced Radiology Services (ARS) has joined its national Quality ...

Time November 17, 2025
arrow
News | Radiology Imaging

Nov. 13, 2025 — Medical imaging AI company Avicenna.AI has launched AVI, a new platform that delivers AI results ...

Time November 13, 2025
arrow
News | RSNA 2025

Nov. 7, 2025 — Coreline Soft will introduce its chest AI platform AVIEW 2.0 at RSNA 2025 (Nov. 30 – Dec. 4, Chicago) ...

Time November 10, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | RSNA 2025

Nov. 4, 2025 — Altamont Software, a provider of enterprise medical connectivity solutions, has announced the ...

Time November 05, 2025
arrow
Feature | Breast Imaging

Despite decades of progress in breast imaging, one challenge continues to test even the most skilled radiologists ...

Time October 24, 2025
arrow
Subscribe Now