News | Radiopharmaceuticals and Tracers | January 17, 2017

NorthStar Medical Technologies Receives Follow-on Award from National Nuclear Security Administration

Award furthers $50 million cooperative agreement supporting NorthStar Medical Radioisotopes’ accelerator method of producing Molybdenum-99

January 17, 2017 — NorthStar Medical Technologies LLC has received additional matching funds from the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) for its accelerator method of producing the medical radioisotope molybdenum-99 (Mo-99). The addition brings the total funding for the new method, in development by subisidiary NorthStar Medical Radioisotopes, to $11.1 million.

The award supports the process’ continued advancement toward commercialization and recognizes NorthStar’s progress toward its goal of offering multiple sources of Mo-99 produced in the United States using complementary processes that do not involve highly enriched uranium (HEU).

The award advances a $50 million cooperative agreement between the two organizations in which NorthStar raised $25 million that will be matched dollar-for-dollar by DOE/NNSA upon full funding of the agreement. NNSA had already fully funded a separate $50 million cooperative agreement supporting NorthStar’s neutron activation Mo-99 production method, which also does not use HEU as the target material.

Mo-99 is the parent isotope of technetium-99m (Tc-99m), the most widely used radioisotope in medical diagnostic imaging. Tc-99m is used in approximately 40 million procedures worldwide each year to diagnose and stage cancer, heart disease, infection, inflammation and other conditions. But while the United States accounts for roughly half of that demand, no Mo-99 has been produced domestically since 1989. All Mo-99 is currently produced overseas, much of it in aging reactors using weapons-usable HEU, creating safety and national security concerns and the risk of product shortages.

Both of NorthStar’s production methods use safe, non-radioactive target material and an external radiation source to convert a naturally occurring isotope of molybdenum into Mo-99 suitable for use in NorthStar’s proprietary RadioGenix isotope separation system. There, it decays to create Tc-99m. Both processes produce a low-volume, benign waste stream, making them “greener” than all other processes that use uranium-based targets.

Accelerator production is currently the most environmentally friendly method of Mo-99 generation; an electron beam from a linear accelerator (LINAC), rather than a fission reactor, is used as a radiation source to drive a reaction that converts molybdenum-100 to Mo-99. The neutron capture method uses neutrons from a fission reactor to convert molybdenum-98 to Mo-99.

In pairing the two production methods, NorthStar will ensure a steady supply of Mo-99 by mitigating the disruptions commonly experienced by single-method producers when faced with unexpected equipment downtime.

 

 

 

Read the 2017 article "FDA Clears Path for First Domestic Supply of Tc-99m Isotope." 

For more information: www.northstarnm.com

Related Content

MEDraysintell Projects Increasing Mergers and Acquisitions in Nuclear Medicine
News | Nuclear Imaging | November 07, 2018
With the recent announcement by Novartis to acquire Endocyte , interest from the conventional pharmaceutical industry...
A PET/CT head and neck cancer scan.

A PET/CT head and neck cancer scan.

Feature | Nuclear Imaging | November 05, 2018 | By Sabyasachi Ghosh
“Experimental validation implemented in real-life situations and not theoretical claims exaggerating small advantages
PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

News | PET Imaging | October 24, 2018
While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications....
CORAR Supports Medicare Diagnostic Radiopharmaceutical Payment Equity Act of 2018
News | Radiopharmaceuticals and Tracers | October 12, 2018
October 12, 2018 — The Council on Radionuclides and Radiopharmaceuticals Inc.
Huntsman Cancer Institute Installs First Preclinical nanoScan 3T PET/MRI in U.S.
News | PET-MRI | October 10, 2018
The Center for Quantitative Cancer Imaging at Huntsman Cancer Institute (HCI) at the University of Utah in Salt Lake...
Technology and Radionucleotide Development Will Fuel Mobile Gamma Camera Adoption
News | Nuclear Imaging | September 27, 2018
Advancements in healthcare technology, particularly in the surgery category, have led to an increasing adoption of...
Bruker Introduces New High-Performance Preclinical PET/CT Si78 System
Technology | PET-CT | September 26, 2018
September 26, 2018 — Bruker recently announced the introduction of the new preclinical...
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
The Siemens Biograph Vision PET-CT system was released in mid-2018.

The Siemens Biograph Vision PET-CT system was released in mid-2018.

Feature | Nuclear Imaging | September 07, 2018 | By Dave Fornell
Nuclear imaging technology for both single photon emission computed tomography (SPECT) and positron emission tomography...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...