News | Radiopharmaceuticals and Tracers | January 17, 2017

Award furthers $50 million cooperative agreement supporting NorthStar Medical Radioisotopes’ accelerator method of producing Molybdenum-99

January 17, 2017 — NorthStar Medical Technologies LLC has received additional matching funds from the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) for its accelerator method of producing the medical radioisotope molybdenum-99 (Mo-99). The addition brings the total funding for the new method, in development by subisidiary NorthStar Medical Radioisotopes, to $11.1 million.

The award supports the process’ continued advancement toward commercialization and recognizes NorthStar’s progress toward its goal of offering multiple sources of Mo-99 produced in the United States using complementary processes that do not involve highly enriched uranium (HEU).

The award advances a $50 million cooperative agreement between the two organizations in which NorthStar raised $25 million that will be matched dollar-for-dollar by DOE/NNSA upon full funding of the agreement. NNSA had already fully funded a separate $50 million cooperative agreement supporting NorthStar’s neutron activation Mo-99 production method, which also does not use HEU as the target material.

Mo-99 is the parent isotope of technetium-99m (Tc-99m), the most widely used radioisotope in medical diagnostic imaging. Tc-99m is used in approximately 40 million procedures worldwide each year to diagnose and stage cancer, heart disease, infection, inflammation and other conditions. But while the United States accounts for roughly half of that demand, no Mo-99 has been produced domestically since 1989. All Mo-99 is currently produced overseas, much of it in aging reactors using weapons-usable HEU, creating safety and national security concerns and the risk of product shortages.

Both of NorthStar’s production methods use safe, non-radioactive target material and an external radiation source to convert a naturally occurring isotope of molybdenum into Mo-99 suitable for use in NorthStar’s proprietary RadioGenix isotope separation system. There, it decays to create Tc-99m. Both processes produce a low-volume, benign waste stream, making them “greener” than all other processes that use uranium-based targets.

Accelerator production is currently the most environmentally friendly method of Mo-99 generation; an electron beam from a linear accelerator (LINAC), rather than a fission reactor, is used as a radiation source to drive a reaction that converts molybdenum-100 to Mo-99. The neutron capture method uses neutrons from a fission reactor to convert molybdenum-98 to Mo-99.

In pairing the two production methods, NorthStar will ensure a steady supply of Mo-99 by mitigating the disruptions commonly experienced by single-method producers when faced with unexpected equipment downtime.

 

 

 

Read the 2017 article "FDA Clears Path for First Domestic Supply of Tc-99m Isotope." 

For more information: www.northstarnm.com

Related Content

News | Nuclear Imaging

November 22, 2021 — IBA, a leader in particle accelerator technology, and NorthStar Medical Radioisotopes LLC, a global ...

Time November 22, 2021
arrow
Videos | Radiopharmaceuticals and Tracers

Ana Kiess, M.D., Ph.D., assistant professor of radiation oncology and molecular radiation sciences, Johns Hopkins ...

Time November 17, 2021
arrow
News | Digital Pathology

November 15, 2021 — Saltus Biotech, a leader in 8k image technology, introduces a new high-end computer workstation and ...

Time November 15, 2021
arrow
News | Molecular Imaging

October 29, 2021 — NorthStar Medical Radioisotopes, LLC, a global innovator in the development, production and ...

Time October 29, 2021
arrow
News | Radiation Therapy

October 19, 2021 — RAD Technology Medical Systems (RAD) announced that it will be exhibiting at the 2021 American ...

Time October 19, 2021
arrow
News | PET Imaging

October 19, 2021 — Blue Earth Diagnostics, a Bracco company and recognized leader in the development and ...

Time October 19, 2021
arrow
News | PET Imaging

October 18, 2021 — PSMA (prostate-specific membrane antigen) PET/CT is more accurate than conventional CT in the ...

Time October 18, 2021
arrow
News | Radiation Therapy

October 7, 2021 — NANOBIOTIX, a late-stage clinical biotechnology company pioneering physics-based approaches to expand ...

Time October 07, 2021
arrow
Feature | Cardiac Imaging

October 6, 2021 – A new study published in Radiology: Cardiothoracic Imaging on cardiac imaging trends over a decade ...

Time October 06, 2021
arrow
News | Magnetic Resonance Imaging (MRI)

September 20, 2021 — Gadolinium-based contrast agents, the gold standard in magnetic resonance imaging (MRI) to ...

Time September 20, 2021
arrow
Subscribe Now