October 16, 2008 - The National Center for Research Resources (NCRR), a part of the National Institutes of Health (NIH), announced it will provide up to an estimated $11 million over the next five years to research on imaging techniques designed specifically to better diagnose and treat diseases and analyzing sets of interacting proteins.

NIH will fund studies at two new Biomedical Technology Research Centers (BTRCs) with access to specialized research tools. One center will develop innovative imaging techniques using magnetic resonance imaging (MRI) designed specifically to better diagnose and treat diseases, such as Alzheimer’s, where the nervous system progressively deteriorates. A second center will create cutting-edge software for identifying and analyzing sets of interacting proteins that are important in a wide range of diseases, such as cancer.

Each center creates critical and often unique technology to apply to a broad range of basic, clinical and translational research. Serving as test beds for solving complex biomedical research problems, BTRC research projects combine the expertise of multidisciplinary technical and biomedical experts both within the center and through collaborative partnerships. These efforts result in innovative solutions to today’s health challenges, which are then actively disseminated to promote rapid adoption and achieve the broadest possible impact.

The new centers are being established at the Northern California Institute for Research and Education Inc. in San Francisco and at the University of California, San Diego.

The Northern California Institute for Research and Education Inc. in San Francisco will receive a five-year award up to an estimated $6.04 million to develop a center for magnetic resonance imaging (MRI) of neurodegenerative disorders. This BTRC will develop innovative and improved MRI techniques for clinicians to better understand, detect, diagnose, and treat diseases, such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease.
The advanced techniques developed at the new center will offer researchers and clinicians improved image clarity, more reliable and precise methods for capturing anatomical data, more efficient and accurate reconstruction methods, and improved image processing capabilities.

Through a second BTRC award to the University of California, San Diego, totaling up to an estimated $4.94 million over five years, NCRR will support a new center for computational mass spectrometry that will serve as an international resource in proteomics, enabling more research activities, investigation into unexplored areas of computational proteomics, and support of collaborative research efforts. The goal of a proteomics experiment is often to identify thousands of proteins present in a complex biological sample, and detect differences in the amounts or structures of these proteins when samples are compared (e.g., a tumor vs. normal tissue). Looking at these differences and how they relate to one another can help shed light on the causes or progression of a disease and how drugs might be able to treat the disease.

The complex data generated in these experiments require sophisticated computational tools for interpretation. These tools have lagged behind the rapid evolution of new analytical technologies for proteomics. This new center will bring creative mathematical approaches to mass spectrometry and will build a new generation of reliable open-access software tools that will catalyze exchange and collaboration among experimental and computational researchers in proteomics, furthering advances in this critical field of research. The center will also focus on training the scientific community in the use of the technologies it develops.

For more information: www.ncrr.nih.gov/btrr/2008 and www.ncrr.nih.gov/btrr, www.ncrr.nih.gov and www.nih.gov


Related Content

News | Prostate Cancer

June 26, 2025 – Quibim, a global provider of quantitative medical imaging solutions, has launched AI-QUAL, a new feature ...

Time June 26, 2025
arrow
News | Pediatric Imaging

April 10, 2025 — Cincinnati Children’s and GE HealthCare will form a strategic research program focused on driving ...

Time April 10, 2025
arrow
News | Radiology Imaging

Jan. 15, 2025 — University of California, San Francisco (UCSF) Department of Radiology & Biomedical Imaging and GE ...

Time January 27, 2025
arrow
News | Contrast Media

Jan. 10, 2025 – Bayer has announced positive topline results of the Phase III QUANTI studies evaluating the efficacy and ...

Time January 14, 2025
arrow
News | Women's Health

Aug. 19, 2024 — GE HealthCare recently announced a collaboration with the University of California San Diego School of ...

Time August 29, 2024
arrow
News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 17, 2024 — Hyperfine, a groundbreaking medical device company that has redefined brain imaging with the world’s ...

Time July 17, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
Subscribe Now