News | October 15, 2008

NIH Gives $11 Million to MRI Research for Neurodegenerative Disorders, Proteomics

October 16, 2008 - The National Center for Research Resources (NCRR), a part of the National Institutes of Health (NIH), announced it will provide up to an estimated $11 million over the next five years to research on imaging techniques designed specifically to better diagnose and treat diseases and analyzing sets of interacting proteins.

NIH will fund studies at two new Biomedical Technology Research Centers (BTRCs) with access to specialized research tools. One center will develop innovative imaging techniques using magnetic resonance imaging (MRI) designed specifically to better diagnose and treat diseases, such as Alzheimer’s, where the nervous system progressively deteriorates. A second center will create cutting-edge software for identifying and analyzing sets of interacting proteins that are important in a wide range of diseases, such as cancer.

Each center creates critical and often unique technology to apply to a broad range of basic, clinical and translational research. Serving as test beds for solving complex biomedical research problems, BTRC research projects combine the expertise of multidisciplinary technical and biomedical experts both within the center and through collaborative partnerships. These efforts result in innovative solutions to today’s health challenges, which are then actively disseminated to promote rapid adoption and achieve the broadest possible impact.

The new centers are being established at the Northern California Institute for Research and Education Inc. in San Francisco and at the University of California, San Diego.

The Northern California Institute for Research and Education Inc. in San Francisco will receive a five-year award up to an estimated $6.04 million to develop a center for magnetic resonance imaging (MRI) of neurodegenerative disorders. This BTRC will develop innovative and improved MRI techniques for clinicians to better understand, detect, diagnose, and treat diseases, such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease.
The advanced techniques developed at the new center will offer researchers and clinicians improved image clarity, more reliable and precise methods for capturing anatomical data, more efficient and accurate reconstruction methods, and improved image processing capabilities.

Through a second BTRC award to the University of California, San Diego, totaling up to an estimated $4.94 million over five years, NCRR will support a new center for computational mass spectrometry that will serve as an international resource in proteomics, enabling more research activities, investigation into unexplored areas of computational proteomics, and support of collaborative research efforts. The goal of a proteomics experiment is often to identify thousands of proteins present in a complex biological sample, and detect differences in the amounts or structures of these proteins when samples are compared (e.g., a tumor vs. normal tissue). Looking at these differences and how they relate to one another can help shed light on the causes or progression of a disease and how drugs might be able to treat the disease.

The complex data generated in these experiments require sophisticated computational tools for interpretation. These tools have lagged behind the rapid evolution of new analytical technologies for proteomics. This new center will bring creative mathematical approaches to mass spectrometry and will build a new generation of reliable open-access software tools that will catalyze exchange and collaboration among experimental and computational researchers in proteomics, furthering advances in this critical field of research. The center will also focus on training the scientific community in the use of the technologies it develops.

For more information: www.ncrr.nih.gov/btrr/2008 and www.ncrr.nih.gov/btrr, www.ncrr.nih.gov and www.nih.gov

Related Content

Washington University in St. Louis Begins Clinical Treatments With ViewRay MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | June 14, 2018
June 14, 2018 — The Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in S
Reduced hippocampal volume on MRI

This figure shows reduced hippocampal volume over the course of 6 years as seen on progressive volumetric analysis and also coronal MRI evaluations (arrows).Progressive volume loss in the mesial temporal lobe on MRI is a characteristic imaging feature of AD. This patient was a case of Alzheimer’s Dementia.

 

News | Neuro Imaging | June 12, 2018
According to a UCLA Medical Center study, a new technology shows the potential to help doctors better determine when...
High Prevalence of Atherosclerosis Found in Lower Risk Patients
News | Magnetic Resonance Imaging (MRI) | June 08, 2018
Whole-body magnetic resonance angiography (MRA) found a surprisingly high prevalence of atherosclerosis in people...
Philips Receives FDA 510(k) for Ingenia Elition MR System
Technology | Magnetic Resonance Imaging (MRI) | June 07, 2018
Philips announced that it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its...
New Studies Highlight MRI Use for Prostate Cancer Screening and Management
News | Magnetic Resonance Imaging (MRI) | May 21, 2018
Three new studies presented at the 113th annual meeting of the American Urological Association (AUA) highlight the...
MRI "Glove" Provides New Look at Hand Anatomy

An experiment showed that a glove-shaped detector could yield images of bones, cartilage, and muscles interacting as a hand 'plays piano.' Traditionally, MRI had required patients to remain strictly motionless.Image courtesy of Nature Biomedical Engineering; Bei Zhang, Martijn Cloos, Daniel Sodickson

News | Magnetic Resonance Imaging (MRI) | May 17, 2018
A new kind of magnetic resonance imaging (MRI) component in the shape of a glove delivers the first clear images of...
FDA Clears Medic Vision's iQMR MRI Image Enhancement Technology

Image courtesy of Medic Vision Imaging Solutions

Technology | Magnetic Resonance Imaging (MRI) | May 15, 2018
May 15, 2018 — Medic Vision Imaging Solutions Ltd. announced that the U.S.
Impaired Brain Pathways May Cause Attention Problems After Stroke
News | Neuro Imaging | May 10, 2018
Damage to some of the pathways that carry information throughout the brain may be responsible for attention deficit in...
Functional MRI Assesses Crocodile Brain Listening to Classical Music

A research team from Ruhr-Universität Bochum (RUB) used functional MRI to assess the brain patterns of a Nile crocodile and determine what happens when the animal hears complex sounds. Image courtesy of Felix Ströckens, M.D./Proceedings of the Royal Society B: Biological Sciences

News | Magnetic Resonance Imaging (MRI) | May 08, 2018
May 8, 2018 — In a first, an international research team from the Department of Biopsychology at Ruhr-Universität Boc
7T MRI Provides Precise 3-D Maps of Brain Activity

fMRI of a patient with secondary glioblastoma (brain tumor). Functional localization was measured before surgery by means of a motor task (hand opening and closing). On the left, the uncorrected scan, on the right the result after dynamic image correction. Image courtesy of Quelle: MUW/ High Field MR Centre of Excellence

 

News | Magnetic Resonance Imaging (MRI) | May 03, 2018
With the support of the Austrian Science Fund FWF, researchers from Vienna have developed methods to improve functional...
Overlay Init