News | July 28, 2008

New Technique Estimates Lung Tumor Changes

July 29, 2008 - Lung cancer presents a special challenge to clinicians attempting to evaluate the effectiveness of radiation treatment and determine the total dose of radiation received by the tumor and surrounding tissues.

The reason is simple: lung tumors change position as an individual breathes during medical scans. This unavoidable movement of the lungs makes it difficult to accurately assess tumor volume (particularly in the very small malignant nodules that are more treatable if detected early) and track any changes in size that may have resulted from treatment.

Issam M. El Naqa, an assistant professor of radiation oncology at Washington University in St. Louis, and his colleagues have devised a novel solution. Their semi-automated system combines two types of computer algorithms previously only used separately to process data from computerized tomography (CT) scans of the lungs.

So-called deformable regression algorithms are used to create a consistent set of coordinates on which tumor position and size can be mapped over the course of treatment, and segmentation algorithms allow tumors to be precisely located and distinguished from other lung tissue (or "segmented") in CT images. El Naqa and his colleagues, realizing that "both approaches could significantly benefit from the results of the other algorithm if coupled in the same framework," created a new program that does just that.

El Naqa, who has tested the combination algorithm in a preliminary study of four people with non-small cell lung cancer, says that the method provides more accurate and consistent results for tracking tumor changes. He says the technique "would allow us to learn more about tumor response to treatment and potentially be used in treatment adaptation," or, perhaps, in the pre-planning of treatment strategies that would reduce the overall levels of toxic radiation received by people undergoing radiotherapy for lung cancer.

For more information:

Source: American Association of Physicists in Medicine

Related Content

MedStar Georgetown Proton Center Selects RayStation for Treatment Planning
News | Treatment Planning | August 17, 2017
August 17, 2017 — The proton center at MedStar Georgetown University Hospital will utilize RayStation for planning on
DOSIsoft Releases ISOgray Proton Therapy Treatment Planning System
Technology | Treatment Planning | August 15, 2017
DOSIsoft SA announced the official release, with CE marking, of ISOgray Treatment Planning System (TPS) release 4.3 for...
First Radixact Results Presented at AAPM 2017
News | Radiation Therapy | August 10, 2017
Accuray Inc. announced that the first studies validating the benefits of the Radixact System were presented at the 59th...
Clinical Data Supports Use of Xoft System for Endometrial Cancer
News | Brachytherapy Systems | August 03, 2017
Researchers presented clinical data supporting use of the Xoft Axxent Electronic Brachytherapy (eBx) System for the...
Aktina’s interchangeable cones are lightweight and extremely accurate
News | Radiation Therapy | August 02, 2017
Aktina Medical announced a collaboration with Philips Medical Systems and Elekta Instruments for SRS interlocking at...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
Accuray Receives 510(k) Clearance for iDMS Data Management System
Technology | Oncology Information Management Systems (OIMS) | July 31, 2017
July 31, 2017 — Accuray Inc. announced it has received 510(k) clearance from the U.S.
more healthcare providers and patients are choosing options such as Gamma Knife stereotactic radiosurgery
News | Radiation Therapy | July 31, 2017
Each year, up to 650,000 people who were previously diagnosed with various forms of cancer will develop brain...
Overlay Init