AI-annotated medical image showing enhanced tumor, tumor core and edema regions. Image courtesy of Monash University 

AI-annotated medical image showing enhanced tumor, tumor core and edema regions. Image courtesy of Monash University 


July 26, 2023 — Researchers at Monash University have designed a new co-training AI algorithm for medical imaging that can effectively mimic the process of seeking a second opinion. 

Published recently in Nature Machine Intelligence, the research addressed the limited availability of human annotated, or labelled, medical images by using an adversarial, or competitive, learning approach against unlabeled data. 

This research, by Monash University faculties of Engineering and IT, will advance the field of medical image analysis for radiologists and other health experts. 

PhD candidate Himashi Peiris of the Faculty of Engineering, said the research design had set out to create a competition between the two components of a "dual-view" AI system. 

“One part of the AI system tries to mimic how radiologists read medical images by labelling them, while the other part of the system judges the quality of the AI-generated labelled scans by benchmarking them against the limited labelled scans provided by radiologists,” said Peiris. 

“Traditionally radiologists and other medical experts annotate, or label, medical scans by hand highlighting specific areas of interest, such as tumors or other lesions. These labels provide guidance or supervision for training AI models. 

“This method relies on the subjective interpretation of individuals, is time-consuming and prone to errors and extended waiting periods for patients seeking treatments.” 

The availability of large-scale annotated medical image datasets is often limited, as it requires significant effort, time and expertise to annotate many images manually. 

The algorithm developed by the Monash researchers allows multiple AI models to leverage the unique advantages of labelled and unlabeled data, and learn from each other's predictions to help improve overall accuracy. 

“Across the three publicly accessible medical datasets, utilizing a 10 per cent labelled data setting, we achieved an average improvement of 3 per cent compared to the most recent state-of-the-art approach under identical conditions,” said Peiris. 

“Our algorithm has produced groundbreaking results in semi-supervised learning, surpassing previous state-of-the-art methods. It demonstrates remarkable performance even with limited annotations, unlike algorithms that rely on large volumes of annotated data. 

“This enables AI models to make more informed decisions, validate their initial assessments, and uncover more accurate diagnoses and treatment decisions.” 

The next phase of the research will focus on expanding the application to work with different types of medical images and developing a dedicated end-to-end product that radiologists can use in their practices. 

The study published in Nature Machine Intelligence was led by Associate Professor Mehrtash Harandi and conducted by principal researcher, Himashi Peiris, a Ph.D. candidate at Monash University’s Faculty of Engineering, together with Associate Professor Zhaolin Chen, Dr Munawar Hayat and Professor Gary Egan, from Monash Biomedical Imaging and the Faculty of Information Technology. 

For more information: https://www.monash.edu/


Related Content

News | FDA

Dec. 02, 2025 — Alpha Tau Medical Ltd., the developer of the alpha-radiation cancer therapy Alpha DaRT, has announced ...

Time December 04, 2025
arrow
News | Women's Health

Dec. 1, 2025 — ScreenPoint Medical has completed a commercial agreement making its Transpara breast-imaging AI portfolio ...

Time December 03, 2025
arrow
News | X-Ray

Dec. 1, 2025 – Zwanger-Pesiri Radiology, one of the most respected and technologically advanced outpatient radiology ...

Time December 03, 2025
arrow
News | Information Technology

Dec. 1, 2025 — BioSked has announced a major expansion of its Momentum scheduling platform, introducing one of the first ...

Time December 03, 2025
arrow
News | Interventional Radiology

Dec. 1, 2025 — GE HealthCare has unveiled the Allia Moveo,1 an image guiding solution designed to enhance mobility and ...

Time December 02, 2025
arrow
News | Radiology Imaging

Dec. 1, 2025 — Rad AI has launched next-generation speech recognition technology (patent pending) that dramatically ...

Time December 02, 2025
arrow
News | Archive Cloud Storage

Nov. 30, 2025 — Gradient Health, Inc. has released Atlas 2, a major upgrade to its self-service medical imaging data ...

Time December 01, 2025
arrow
News | X-Ray

Dec. 1, 2025 — Medimaps Group S.A., a provider of AI-driven bone microarchitecture imaging solutions, will make the ...

Time December 01, 2025
arrow
News | FDA

Nov. 25, 2025 — RapidAI has announced the U.S. Food and Drug Administration (FDA) clearance of five new imaging modules ...

Time November 25, 2025
arrow
News | Artificial Intelligence

Nov. 24, 2025 — Siemens Healthineers is launching artificial intelligence-enabled services to help healthcare providers ...

Time November 24, 2025
arrow
Subscribe Now