News | August 26, 2014

New Information on Transcranial Ultrasound Therapy

Transcranial Ultrasound Therapy Oncology

August 26, 2014 — A recent study completed at the University of Eastern Finland provides new information on the limitations and potential new directions for the future development of transcranial ultrasound therapy. Active research is taking place in the field of transcranial ultrasound therapy, which in the future can potentially be applied to the treatment of brain tumors and targeted drug delivery. The therapy modality has already been successfully applied to the treatment of neuropathic pain disorder and essential tremors. The benefits of transcranial ultrasound therapy include minimal invasiveness, as the treatment is delivered to the brain by transmitting ultrasound through the intact skull of the patient. The study focuses on two issues that may potentially limit the applicability of transcranial ultrasound: skull-base heating and formation of standing-waves.

Skull-base Heating Must be Taken Into Account in Treatment Planning

As the ultrasound beam encounters the skull bone, part of the beam's energy is transferred into the skull as heat. In the study, it was found that the heating of the skull-base during transcranial ultrasound therapy can result in hazardous temperature elevations when the sonications are performed close to the skull-base. Three new methods to counteract this potentially hazardous phenomenon were developed in the study.

Standing waves, on the other hand, are formed in the ultrasound field when waves reflect from the surface of the skull bone. During transcranial ultrasound therapy, the ultrasound amplitude can reach higher levels than intended if these reflections are not taken into account during the initial treatment planning. The study found that the formation of standing waves is greatly reduced when specifically designed large-area ultrasound transducers are used.

A Numerical Method to Simulate Propagation of Ultrasound

The study also introduces a model to numerically simulate clinical patient treatments performed with transcranial ultrasound therapy. The predictions produced by the model were compared to observations done in clinical patient trials performed earlier. The predictions were found to be of an adequate accuracy for an initial treatment planning. However, more accurate characterization of the acoustical and thermal parameters involved in transcranial ultrasound therapy are nevertheless needed.

For more information: epublications.uef.fi/pub/urn_isbn_978-952-61-1510-8/urn_isbn_978-952-61-1510-8.pdf

Related Content

Neurosurgeon Jason Sheehan, M.D., Ph.D., of UVA Health, is pioneering the use of focused ultrasound to treat glioblastoma, the deadliest brain tumor. Image courtesy of UVA Health

Neurosurgeon Jason Sheehan, M.D., Ph.D., of UVA Health, is pioneering the use of focused ultrasound to treat glioblastoma, the deadliest brain tumor. Image courtesy of UVA Health

News | Focused Ultrasound Therapy | June 23, 2020
June 23, 2020 — An innovativ...
Richard J. Price, Ph.D., of the University of Virginia's School of Medicine and School of Engineering, is using focused soundwaves to overcome the natural 'blood-brain barrier,' which protects the brain from harmful pathogens. Photo courtesy of Dan Addison | UVA Communications

Richard J. Price, Ph.D., of the University of Virginia's School of Medicine and School of Engineering, is using focused soundwaves to overcome the natural 'blood-brain barrier,' which protects the brain from harmful pathogens. Photo courtesy of Dan Addison | UVA Communications

News | Focused Ultrasound Therapy | May 07, 2020
May 7, 2020 — University of Virginia researchers are pioneering the use of...
Insightec's Exablate Neuro Approved With GE Signa Premier MRI in U.S. and Europe
News | Focused Ultrasound Therapy | July 10, 2019
GE Healthcare and Insightec announced U.S. Food and Drug Administration (FDA) approval and CE mark for Insightec’s...
Varian Purchasing Embolic Bead Assets from Boston Scientific
News | Interventional Radiology | July 03, 2019
Varian announced it has signed an asset purchase agreement to acquire the Boston Scientific portfolio of drug-loadable...
Clinical Trial Explores Opening Blood-Brain Barrier in Fight Against Alzheimer's

Vibhor Krishna, M.D., (right) fits David Shorr with a helmet-like device used in a new clinical trial for Alzheimer’s disease at The Ohio State University Wexner Medical Center. The device uses MRI-guided imaging to deliver focused ultrasound to specific areas of the brain to open the blood-brain barrier. Image courtesy of Ohio State University Wexner Medical Center.

News | Focused Ultrasound Therapy | May 09, 2019
May 9, 2019 — A new clinical trial at The Ohio State University Wexner Medical Center and two other sites is testing
Houston Methodist Hospital Acquires Focal One High-Intensity Focused Ultrasound System
News | Focused Ultrasound Therapy | March 19, 2019
EDAP TMS SA announced that Houston Methodist Hospital, one of the first hospitals in the U.S. to offer Ablatherm...
FDA Approves Exablate Neuro for Tremor-Dominant Parkinson's Treatment
Technology | Focused Ultrasound Therapy | December 21, 2018
Insightec announced that the U.S. Food and Drug Administration (FDA) has approved an expansion of the indication of...
Videos | Radiation Oncology | November 06, 2018
Genomics can be used to assess a patient's radiosensitivity, which can be used to increase or decrease the radiation
News | Radiation Dose Management | September 24, 2018
AngioDynamics Inc. announced an agreement to acquire RadiaDyne, a privately held medical diagnostic and device company...