News | X-Ray | August 13, 2015

New Device Converts DC Electric Field to Terahertz Radiation

Tunable radiation source that reaches coveted THz region of spectrum could be used for tumor identification in medical imaging

terahertz radiation, THz, new device, convert, DC electric field, imaging

August 13, 2015 — In a step towards more widespread use of terahertz radiation — the no-man’s land of the electromagnetic spectrum — researchers have designed a device that can convert a DC electric field into a tunable source of terahertz radiation. Their results are published this week in the Journal of Applied Physics.

Terahertz radiation has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques can manipulate longer-wavelength radiation like microwaves and radio waves. Terahertz radiation, on the other hand, lies in the gap between microwaves and infrared, whether neither traditional way to manipulate waves works effectively. As a result, creating coherent artificial sources of terahertz radiation in order to harness it for human use requires some ingenuity.

Difficulties of generating it aside, terahertz radiation has a wide variety of potential applications, particularly in medical and security fields. Because it's a non-ionizing form of radiation, it is generally considered safe to use on the human body. For instance, it can distinguish between tissues of different water content or density, making it a potentially valuable tool for identifying tumors. It could also be used to detect explosives or hidden weapons, or to wirelessly transmit data.

The new device exploits the instabilities in the oscillation of conducting electrons at the device's surface, a phenomenon known as surface plasmon resonance. To address the terahertz gap, the team created a hybrid semiconductor: a layer of thick conducting material paired with two thin, two-dimensional crystalline layers made from graphene, silicene (a graphene-like material made from silicon instead of carbon) or a two-dimensional electron gas. When a direct current is passed through the hybrid semiconductor, it creates a plasmon instability at a particular wave number. This instability induces the emission of terahertz radiation, which can be harnessed with the help of a surface grating that splits the radiation.

By adjusting various parameters, such as the density of conduction electrons in the material or the strength of the DC electric field, it is possible to tune the cutoff wave number and, consequently, the frequency of the resulting terahertz radiation.

"[Our work] demonstrates a new approach for efficient energy conversation from a DC electric field to coherent, high-power and electrically tunable terahertz emission by using hybrid semiconductors," said Andrii Iurov, a researcher with a dual appointment at the University of New Mexico's Center for High Technology Materials and the City University of New York. "Additionally, our proposed approach based on hybrid semiconductors can be generalized to include other novel two-dimensional materials, such as hexagonal boron nitride, molybdenum disulfide and tungsten diselenide."

Other labs have created artificial sources of terahertz radiation, but this design could enable better imaging capabilities than other sources can provide. "Our proposed devices can retain the terahertz frequency like other terahertz sources but with a much shorter wavelength for an improved spatial resolution in imaging application as well as a very wide frequency tuning range from a microwave to a terahertz wave," said Iurov.

For more information: www.scitation.aip.org

Related Content

Oxipit Introduces Multilingual Support for ChestEye AI Imaging Suite
News | Artificial Intelligence | April 16, 2019
The CE-certified ChestEye artificial intelligence (AI) imaging suite by Oxipit is now available in seven European...
Check-Cap Initiates U.S. Pilot Study of C-Scan for Colorectal Cancer Screening
News | Colonoscopy Systems | April 15, 2019
Check-Cap Ltd. has initiated its U.S. pilot study of the C-Scan system for prevention of colorectal cancer through...
Enlitic Closes Series B Funding for Artificial Intelligence Solutions for Radiologists
News | Artificial Intelligence | April 08, 2019
Radiology artificial intelligence (AI) company Enlitic announced the close of its $15 million Series B financing round...
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa
Artificial Intelligence Can Improve Emergency X-ray Identification of Pacemakers
News | X-Ray | March 29, 2019
A research team from Imperial College London believes a new software could speed up the diagnosis and treatment of...
FDA Clears Mobilett Elara Max Mobile X-ray from Siemens Healthineers
Technology | Digital Radiography (DR) | March 20, 2019
The U.S. Food and Drug Administration (FDA) has cleared the Mobilett Elara Max mobile X-ray system from Siemens...
Shimadzu School of Radiologic Sciences Approved at Midwestern State University
News | Digital Radiography (DR) | March 05, 2019
Shimadzu Medical Systems USA (SMS) announced that The Shimadzu School of Radiologic Sciences has been approved by...
Agfa Receives FDA Clearance for DR 800 With Tomosynthesis
Technology | Digital Radiography (DR) | February 21, 2019
Agfa Healthcare has received U.S. Food and Drug Administration (FDA) 510(k) clearance for its DR 800 multipurpose...
Philips Earns FDA Clearance for DigitalDiagnost C90 DR System
Technology | Digital Radiography (DR) | February 20, 2019
Philips announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market the...
Artificial Intelligence Research Receives RSNA Margulis Award
News | Digital Radiography (DR) | January 28, 2019
The Radiological Society of North America (RSNA) presented its seventh Alexander R. Margulis Award for Scientific...