News | December 30, 2014

Microwaves Could Provide Safer, Better Quality Breast Imaging

Alternative imaging technique based on difference in electric conductivity of cancerous, normal tissue

These are internal, spatially mapped microwave tomography system generated electrical property distribution images of a cancer patient's left breast, taken somewhat into her therapy. Shown are permittivity and conductivity image sets (top and bottom image series, respectively) reconstructed at 1100 MHz. Each plane (i.e., p1 - p7) identifies a different location within system where the image was taken, and is relative to the chest wall. You can clearly see the breast outline and the features inside the breast relate to fibroglandular tissue inside the adipose tissue. This breast has undergone treatment and so most of the tumor has disappeared. Image courtesy of N.Epstein/U.Calgary

This image shows an image of a microwave breast tomography instrument. Image courtesy of N.Epstein/U.Calgary.

December 30, 2014 — A new study in the current issue of the journal Review of Scientific Instruments from AIP Publishing suggests a microwave imaging system may provide a better, cheaper and safer way to look for breast cancer.

Although currently available diagnostic screening systems for breast cancer like X-ray computed tomography (CT) and mammography are effective at detecting early signs of tumors, they are far from perfect,

subjecting patients to ionizing radiation and sometimes inflicting discomfort on women who are undergoing screening because of the compression of the breast that is required to produce diagnostically useful images.

Microwaves could provide an alternative for looking for the telltale signs of breast cancer, said Neil Epstein, a NSERC CREATE I3T postdoctoral fellow at the University of Calgary in Canada. Epstein and his colleagues—engineering professor Paul Meaney of Dartmouth College's Thayer School of Engineering; and Keith Paulsen, director of the Dartmouth Advanced Imaging Center and the Robert A. Pritzker Professor of Biomedical Engineering and Professor of Radiology at the Geisel School of Medicine at Dartmouth—describe just such a microwave imaging system in the study.

Microwave imaging relies upon the known differences in the so-called dielectric properties of cancerous tissue and normal tissue—that is, their ability to conduct electricity or sustain an electric field. In the technique, the breast is suspended in a liquid bath (but not compressed) and closely surrounded by an array of 16 antennae. Each antenna illuminates the breast individually with a very low power microwave signal, with approximately one one-thousandth the power of a cell phone, while the other 15 antennae receive the signals transmitted through the breast; this is repeated for all 16 antennae, providing data that can be used to produce a 3-D representation of the breast, including the location of both normal and cancerous tissue.

"The iterative image reconstruction algorithm computes what the dielectric property distribution must have been to generate the measured signal patterns," Epstein said. "It is quite similar to X-ray computed tomography, where the target is radiated from all of the surrounding directions and the data is synthesized to create an image of the internal structures."

Although microwave imaging systems cannot yet provide the spatial resolution of mammography, they offer better specificity, Epstein said. In other words, once tumors are localized, the microwave imaging systems may be more adept at identifying whether those tumors are benign or malignant—determinations now made through tissue biopsies.

"Researchers are realizing that this lack of specificity is a significant limitation for conventional imaging techniques and are looking for alternative ways to enhance it. Microwave imaging could fill this niche, possibly in combination with other modalities," he said.

For more information: www.rsi.aip.org

Related Content

Illinois Governor Approves State Breast Density Reporting Bill Into Law
News | Breast Density | August 13, 2018
Illinois Gov. Bruce Rauner approved the Illinois Breast Density Reporting Law (Public Act 100-0749) on Aug. 10, 2018...
PET Tracer Identifies Estrogen Receptor Expression Differences in Breast Cancer Patients
News | PET Imaging | August 09, 2018
In metastatic breast cancer, prognosis and treatment is largely influenced by estrogen receptor (ER) expression of the...
iCAD Receives FDA Clearance of PowerLook Density Assessment for Digital Breast Tomosynthesis
Technology | Breast Density | August 08, 2018
iCAD announced U.S. Food and Drug Administration (FDA) clearance of its latest artificial intelligence (AI) software...
Cardiac Imaging Reveals Roots of Preeclampsia Damage in Pregnant Women
News | Women's Health | August 07, 2018
Johns Hopkins researchers say a heart imaging study of scores of pregnant women with the most severe and dangerous form...
Cardiac Monitoring a Higher Priority for High-Risk Breast Cancer Patients
News | Cardio-oncology | August 07, 2018
August 7, 2018 — While heart failure is an uncommon complication of...
Hologic Acquires Digital Specimen Radiography Company Faxitron Bioptics

VisionCT 3-D breast specimen-designated computed tomography (CT) system. Image courtesy of Faxitron Bioptics.

News | Breast Imaging | July 31, 2018
Hologic Inc. announced it has completed the acquisition of Faxitron Bioptics, a privately-held leader in digital...
Konica Minolta Hosting Lunch and Learn at 23rd Annual Mammography Meeting in Santa Fe
News | Breast Imaging | July 31, 2018
Konica Minolta Healthcare Americas Inc. will sponsor a lunch and learn featuring its Exa Mammo platform during the 23rd...
FDA Approves New Tomosynthesis Quality Control Tests for ACR Digital Mammography QC Manual
News | Mammography | July 30, 2018
The U.S. Food and Drug Administration (FDA) recently approved the American College of Radiology’s (ACR’s) amendment to...
The Magtrace and Sentimag Magnetic Localization System uses magnetic detection during sentinel lymph node biopsy procedures to identify specific lymph nodes, known as sentinel lymph nodes, for surgical removal. The FDA granted approval of the Sentimag System to Endomagnetics Inc.

The  Endomagnetics' Magtrace and Sentimag Magnetic Localization System uses magnetic detection during sentinel lymph node biopsy procedures to identify specific lymph nodes, known as sentinel lymph nodes, for surgical removal.

Technology | Women's Health | July 24, 2018
July 24, 2018 — The U.S.
Overlay Init