News | April 03, 2012

Lower Dosage CT-Guided Lung Biopsy Minimizes Exposure

New Imaging Parameters Found to Reduce Radiation Exposure for Patients

April 3, 2012 — New guidelines for CT-guided biopsies of lung nodules significantly reduce radiation exposure, allowing individuals the benefit of the procedure, which may cut down on overall lung cancer deaths. This research was presented at the Society of Interventional Radiology's (SIR) 37th Annual Scientific Meeting in San Francisco.

"The published early results of a trial using computed tomography (CT) to detect lung nodules demonstrated that screening with low-dose CT reduced mortality from lung cancer by 20 percent compared to screening with chest X-rays alone," said Jeremy Collins, M.D., assistant professor of radiology at Northwestern University in Chicago. "Statistically, many people who undergo screening will have nodules detected with CT and a biopsy may be recommended. We want to minimize the side effects of the biopsy procedure."

While there is debate about the actual risk of cumulative exposure from the types of medical imaging that emit radiation, interventional radiologists are trying to curb patient dose, and CT has been gaining recognition as the most effective imaging technique for lung nodules since it is more sensitive than chest X-rays and other imaging tests.

"Lung nodules are clearly imaged using CT because of the high contrast between normal air-containing lung tissue and higher-density lung nodules. CT technologies have come a long way in offering new tools that reduce the per-procedure radiation dose," said Collins.

The research focuses on a new set of CT imaging parameters to further reduce radiation exposure while maintaining image quality. The new protocol downshifts the amount of energy the CT scanner uses to produce images and moderates the current of the X-ray tube to put out a smaller dose during examination.

"All image studies using X-ray technology are going to be associated with a small amount of finite radiation exposure," said Collins. "Although the jury is still out to some degree, there is general consensus in the community that the radiation dose risk is both linear and additive. Any place where we can reduce the incremental dose for each imaging study is very important because the overall exposure over time can be substantial.”

For this study, researchers implemented the new CT imaging protocol for lung-nodule biopsy and then reviewed data from 100 people, half of whom underwent CT-guided biopsies prior to the new protocol and half after the protocol went into effect. The low dose protocol led to a dramatic 66 percent drop in radiation dose, and image quality was maintained for all of the CT-guided biopsies.

"We found that simple modifications to the CT technique used for guidance to perform lung biopsies resulted in a significant dose reduction to individuals treated," said Collins. "This was possible while maintaining appropriate image quality for interventional radiologists performing biopsy, and fortunately the modification to the scanner technique is simple and can be applied to any existing CT scanner system.”

"The new protocol can be adopted immediately to reduce exposure, but interventional radiologists will still need to evaluate each person on a case-by-case basis, especially smaller people or those who have anatomy that is more difficult to image. The dose can be reduced even further for children, but more studies need to be done to tailor the protocol," he added.

For more information: www.SIRweb.org.

Related Content

Siemens Healthineers Announces First U.S. Installs of Somatom go.Up CT System
News | Computed Tomography (CT) | November 15, 2017
November 15, 2017 — Center for Diagnostic Imaging (CDI), one of the nation’s largest providers of diagnostic imaging
Philips Azurion Image-Guided Therapy Platform Improves Clinical Workflow for Interventional Procedures
News | Angiography | November 15, 2017
Philips announced the results of a comprehensive, independent, two-year study demonstrating the clinical workflow...
Synthetic CT Images Suitable for Prostate Cancer Radiotherapy Planning
News | Treatment Planning | November 14, 2017
Spectronic Medical announced that new data for their MRIPlanner software, generating synthetic computed tomography (sCT...
Detection Technology Introduces Off-the-Shelf Tileable CT Detector Module
Technology | Computed Tomography (CT) | November 13, 2017
November 13, 2017 — Detection Technology recently introduced the world’s first off-the-shelf, tileable...
Siemens Healthineers Introduces Share360 Tailored Service Portfolio
News | Imaging | November 10, 2017
November 10, 2017 — To address the specific needs of...
Johns Hopkins Researchers, Carestream Give Presentations on Medical Imaging Advances at RSNA
News | Digital Radiography (DR) | November 09, 2017
November 9, 2017 — Researchers from The Johns Hopkins University School of Medicine and Carestream Health scientists
Sectra to Provide Orthopedic Post-Operative Follow-Up for Teleradiology Company
News | Orthopedic Imaging | November 09, 2017
International medical imaging IT and cybersecurity company Sectra recently signed an agreement with the global...
UnityPoint Health Installs Infinix-i 4-D CT System for Interventional Procedures
News | Interventional Radiology | November 08, 2017
November 8, 2017 — Physicians at UnityPoint Health Methodist, Peoria, Ill., are now offering fast, safe and accurate
3D CT image reconstruction of the thoracic organs and the heart using Philips software.
Sponsored Content | Webinar | Advanced Visualization | November 07, 2017
The CME webinar “Innovation and Success in 3D-inspired Development of the Business and Clinical Practice,” will take
EOS Imaging Hosts Symposium During American Association of Hip and Knee Surgeons Annual Meeting
News | Orthopedic Imaging | November 07, 2017
EOS imaging hosted a symposium entitled “How 3-D Weight-Bearing Planning from EOS Images Contributes to Improving THA...
Overlay Init