News | January 21, 2013

Low-Dose Molecular Breast Imaging Marks a New Frontier in the Fight Against Breast Cancer

gamma camera

Molecular Breast Imaging (MBI), also known as Breast-Specific Gamma Imaging (BSGI), is a procedure that is able to detect breast cancers missed by mammography and ultrasound, particularly in women with dense breasts. The MBI procedure is now available in hundreds of breast centers nationwide and is commonly utilized as a tool along with mammography and ultrasound to help in the diagnosis of breast cancer. Although the radiation dose associated with this procedure is already low enough to be used in select cases, new research is being conducted to find ways to reduce the dose further so that MBI may be used in annual breast cancer screening for high-risk women with dense breast tissue. The latest results from this research were presented at the Chicago International Breast Course in October by Marcela Bohm-Velez, M.D., the principal investigator of an ongoing trial at Weinstein Imaging Associates in Pittsburgh, Pa.

In the MBI procedure, the patient receives a pharmaceutical tracer. Reducing the amount of tracer needed for imaging reduces the radiation dose to the patient. According to the results obtained by Bohm-Velez and her co-authors, MBI can be conducted using about one half the amount of tracer typically used today, thereby exposing the patient to a much lower radiation dose. In their prospective trial, 72 patients had low-dose MBI followed by imaging at the standard dose and their results indicate that low-dose MBI provided the same diagnostic yield as the images conducted at the standard dose. "The pioneering research done at the Mayo Clinic indicated low-dose is an option for the dual-head MBI system and our research indicates that it is an option for the single-head MBI systems as well. We have found that it is possible to cut the dose in half and still produce diagnostically useful images," said Bohm-Velez. "In our previous work, we found that MBI had a higher sensitivity for breast cancer than mammography or ultrasound and this work is a natural extension. The uptake of the tracer in the breast tissue is complex and highly variable, and our goal is to help the medical community develop strategies for obtaining the best images possible. We have made several observations regarding the rate of tracer washout from the breast tissue and the impact of patient's weight on tracer uptake.  We are currently working to submit our results for peer-reviewed publication this fall."

For mor information: www.molecularbreastimaging.com

Related Content

VolparaEnterprise data analysis shows mammography screening volumes are quickly increasing
News | Mammography | June 09, 2020
June 9, 2020 — More than 75 percent of hospitals and imaging centers that perform mammography across the United State
Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
Nuclear Cardiology Optimistic About Return to Pre-COVID-19 Exam Levels. An American Society of Nuclear Cardiology (ASNC) member survey are confident nuclear cardiology volumes will return to pre-pandemic levels. #COVID19 #SARScov2
News | Nuclear Imaging | June 01, 2020
June 1, 2020 — While acknowledging the challenges their specialty is facing, more than two-thirds of respondents to a
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
Phone call and linkage-to-care-based intervention increases mammography uptake among primary care patients at an urban safety-net hospital

Getty Images

News | Mammography | May 22, 2020
May 22, 2020 — Telephone outreach coupled with scheduling assistance significantly increased...
The Breast Imaging and Reporting System (BI-RADS) was established by the American College of Radiology to help classify findings on mammography. Findings are classified based on the risk of breast cancer, with a BI-RADS 2 lesion being benign, or not cancerous, and BI-RADS 6 representing a lesion that is biopsy-proven to be malignant.

Getty Images

News | Breast Imaging | May 19, 2020
May 19, 2020 — Women with mammographically detected breast lesions that are probably benign should have follow-up sur
Podcast: Impact of COVID-19 on Breast Cancer Treatment with Dr. Andrea Madrigrano

Kubtec hosts a Podcast: Impact of COVID-19 on Breast Cancer Treatment with Andrea Madrigrano, M.D., as part of its public service campaign.

News | Coronavirus (COVID-19) | May 06, 2020
May 6, 2020 — The COVID-19 pandemic is an unprec