News | Mammography | November 10, 2017

Kubtec Brings Image Analytics Capabilities to Tomosynthesis Specimen Imaging Systems

Company will highlight artificial intelligence-based technology for finding microcalcifications and other inclusions at RSNA 2017

Kubtec Brings Image Analytics Capabilities to Tomosynthesis Specimen Imaging Systems

November 10, 2017 – Kubtec announced it will be showcasing new image analytics capabilities on its advanced tomosynthesis specimen imaging systems for breast cancer at the 2017 Radiological Society of North America (RSNA) conference, Nov. 26-Dec. 1 in Chicago.

The company uses 3-D tomosynthesis, which creates images in 1mm digital slices to give radiologists, surgeons and pathologists an improved view of the anatomy of surgical specimens. This enables them to reduce the incidence of positive margins that often lead to repeat surgeries.

Kubtec’s new image analytics technology automatically highlights microcalcifications and other inclusions in the specimen, and identifies and displays their exact location within the specimen. Remote voice control enables medical staff to operate the instruments without breaking scrub.

Kubtec CEO Vikram Butani said the company is focused on bringing augmented intelligence to the intraoperative imaging space. He added that its patent-pending artificial intelligence (AI) program provides additional functionality that reduces errors and oversights, reduces surgical procedure times and enables improvements in patient outcomes.

For more information: www.kubtec.com

Related Content

Varian Unveils Ethos Solution for Adaptive Radiation Therapy
News | Image Guided Radiation Therapy (IGRT) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) annual meeting, being held Sept. 15-18 in Chicago, Varian...
FDA Clears GE Healthcare's Critical Care Suite Chest X-ray AI
Technology | X-Ray | September 12, 2019
GE Healthcare announced the U.S. Food and Drug Administration’s (FDA) 510(k) clearance of Critical Care Suite, a...
iCAD's ProFound AI Wins Best New Radiology Solution in 2019 MedTech Breakthrough Awards
News | Computer-Aided Detection Software | September 09, 2019
iCAD Inc. announced MedTech Breakthrough, an independent organization that recognizes the top companies and solutions...
Imaging Biometrics and Medical College of Wisconsin Awarded NIH Grant
News | Neuro Imaging | September 09, 2019
Imaging Biometrics LLC (IB), in collaboration with the Medical College of Wisconsin (MCW), has received a $2.75 million...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used deep learning, a form of machine learning, which is a type of artificial intelligence. Image courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Society of Breast Imaging (SBI) | September 06, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Philips and Fujifilm booths at SIIM 2019.

Philips and Fujifilm booths at SIIM 2019.

Feature | SIIM | September 06, 2019 | By Greg Freiherr
Pragmatism from cybersecurity to enterprise imaging was in vogue at the 2019 meeting of the Society of Imaging Inform
Sudhen Desai, M.D.

Sudhen Desai, M.D.

Feature | Pediatric Imaging | September 04, 2019 | By Jeff Zagoudis
Burnout has become a popular buzzword in today’s business world, meant to describe prolonged periods of stress in the
Global Diagnostics Australia Incorporates AI Into Radiology Applications
News | Artificial Intelligence | September 04, 2019
Global Diagnostics Australia (GDA), a subsidiary of the Integral Diagnostics Group (IDX), has adopted artificial...
New Radiomics Model Uses Immunohistochemistry to Predict Thyroid Nodules

Workflow of radiomics analysis for IHC indicators. Yellow lines denote area of analysis; red lines denote ROI for radiomic features extraction. X = original image, L = low-pass filter, H = high-pass filter. Image courtesy of Jiabing Gu, et al.

News | Artificial Intelligence | September 03, 2019
Researchers have validated a first-of-its-kind machine learning–based model to evaluate immunohistochemical (IHC)...
Ashley County Medical Center Installs Arkansas' First Fujifilm Aspire Cristalle With DBT
News | Mammography | August 27, 2019
Fujifilm Medical Systems U.S.A. Inc. recently announced that Ashley County Medical Center (Crossett, Ark.) has invested...