News | Artificial Intelligence | August 15, 2018

Intel and Philips Demonstrate CPU Ability in Deep Learning Inference Test Cases

Tests demonstrate significant speed improvements in bone-age-prediction modeling and lung segmentation

Intel and Philips Demonstrate CPU Ability in Deep Learning Inference Test Cases

August 15, 2018 — Intel and Philips recently tested two healthcare uses for deep learning inference models using Intel Xeon Scalable processors and the OpenVINO toolkit. One use case focused on X-rays of bones for bone-age-prediction modeling, the other on computed tomography (CT) scans of lungs for lung segmentation. In these tests, Intel and Philips achieved a speed improvement of 188 times for the bone-age-prediction model, and a 38 times speed improvement for the lung-segmentation model over the baseline measurements.

Until recently, there was one prominent hardware solution to accelerate deep learning: graphics processing unit (GPUs). By design, GPUs work well with images, but they also have inherent memory constraints that data scientists have had to work around when building some models.

Central processing units (CPUs) – in this case Intel Xeon Scalable processors – do not have those same memory constraints and can accelerate complex, hybrid workloads, including larger, memory-intensive models typically found in medical imaging. For a large subset of artificial intelligence (AI) workloads, Intel Xeon Scalable processors can better meet data scientists’ needs than GPU-based systems, according to Intel. As Philips found in the two recent tests, this enables the company to offer AI solutions at lower cost to its customers.

AI techniques such as object detection and segmentation can help radiologists identify issues faster and more accurately, which can translate to better prioritization of cases, better outcomes for more patients and reduced costs for hospitals.

Deep learning inference applications typically process workloads in small batches or in a streaming manner, which means they do not exhibit large batch sizes. CPUs are more suited for low batch or streaming applications. In particular, Intel Xeon Scalable processors offer an affordable, flexible platform for AI models – particularly in conjunction with tools like the OpenVINO toolkit, which can help deploy pre-trained models for efficiency, without sacrificing accuracy.

These tests show that healthcare organizations can implement AI workloads without expensive hardware investments.

The bone-age-prediction model went from an initial baseline test result of 1.42 images per second to a final tested rate of 267.1 images per second after optimizations – an increase of 188 times. The lung-segmentation model surpassed the target of 15 images per second by improving from a baseline of 1.9 images per second to 71.7 images per second after optimizations.

Running healthcare deep learning workloads on CPU-based devices offers direct benefits to companies like Philips, because it allows them to offer AI-based services that do not drive up costs for their end customers, according to Intel. As shown in this test, companies like Philips can offer AI algorithms for download through an online store as a way to increase revenue and differentiate themselves from growing competition.

Multiple trends are contributing to this shift:

  • As medical image resolution improves, medical image file sizes are growing – many images are 1GB or greater;
  • More healthcare organizations are using deep learning inference to more quickly and accurately review patient images; and
  • Organizations are looking for ways to do this without buying expensive new infrastructure.

For more information: www.intel.com, www.usa.philips.com/healthcare

 

Related Content

Welch Road Imaging Integrates RamSoft PowerServer RIS/PACS With openDoctor
News | PACS Accessories | February 20, 2019
Welch Road Imaging in California recently became the first RamSoft customer to integrate openDoctor with its...
Sponsored Content | Videos | Enterprise Imaging | February 20, 2019
At RSNA 2018, Philips Healthcare introduced Performance Bridge as an integral part of its IntelliSpace Enterprise Edi
Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Fujifilm Exhibits Enterprise Imaging Solutions and Artificial Intelligence Initiative at HIMSS 2019
News | Enterprise Imaging | February 15, 2019
Fujifilm Medical Systems U.S.A. Inc. and Fujifilm SonoSite Inc. showcased their enterprise imaging and informatics...
IBM Watson Health Announces New AI Collaborations With Leading Medical Centers
News | Artificial Intelligence | February 14, 2019
IBM Watson Health announced plans to make a 10-year, $50 million investment in research collaborations with two...
Medivis Launches SurgicalAR Augmented Reality Platform
Technology | Advanced Visualization | February 14, 2019
Medical imaging and visualization company Medivis officially unveiled SurgicalAR, its augmented reality (AR) technology...
Densitas Enters Partnership Agreement With TeleMammography Specialists
News | Breast Density | February 14, 2019
Breast imaging analytics company Densitas Inc. announced a new collaboration partnership with TeleMammography...
Office of the National Coordinator Releases Proposed Rule on Healthcare Data Interoperability
News | Information Technology | February 14, 2019
The U.S. Department of Health and Human Services (HHS) has proposed a new rule to support seamless and secure access,...
Sponsored Content | Webinar | Artificial Intelligence | February 14, 2019
This Nuance-sponsored ITN webinar will be held at 1 p.m. Eastern time, Tuesday, Feb. 26, 2019.
Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
February 13, 2019 — At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and e