News | Artificial Intelligence | August 15, 2018

Intel and Philips Demonstrate CPU Ability in Deep Learning Inference Test Cases

Tests demonstrate significant speed improvements in bone-age-prediction modeling and lung segmentation

Intel and Philips Demonstrate CPU Ability in Deep Learning Inference Test Cases

August 15, 2018 — Intel and Philips recently tested two healthcare uses for deep learning inference models using Intel Xeon Scalable processors and the OpenVINO toolkit. One use case focused on X-rays of bones for bone-age-prediction modeling, the other on computed tomography (CT) scans of lungs for lung segmentation. In these tests, Intel and Philips achieved a speed improvement of 188 times for the bone-age-prediction model, and a 38 times speed improvement for the lung-segmentation model over the baseline measurements.

Until recently, there was one prominent hardware solution to accelerate deep learning: graphics processing unit (GPUs). By design, GPUs work well with images, but they also have inherent memory constraints that data scientists have had to work around when building some models.

Central processing units (CPUs) – in this case Intel Xeon Scalable processors – do not have those same memory constraints and can accelerate complex, hybrid workloads, including larger, memory-intensive models typically found in medical imaging. For a large subset of artificial intelligence (AI) workloads, Intel Xeon Scalable processors can better meet data scientists’ needs than GPU-based systems, according to Intel. As Philips found in the two recent tests, this enables the company to offer AI solutions at lower cost to its customers.

AI techniques such as object detection and segmentation can help radiologists identify issues faster and more accurately, which can translate to better prioritization of cases, better outcomes for more patients and reduced costs for hospitals.

Deep learning inference applications typically process workloads in small batches or in a streaming manner, which means they do not exhibit large batch sizes. CPUs are more suited for low batch or streaming applications. In particular, Intel Xeon Scalable processors offer an affordable, flexible platform for AI models – particularly in conjunction with tools like the OpenVINO toolkit, which can help deploy pre-trained models for efficiency, without sacrificing accuracy.

These tests show that healthcare organizations can implement AI workloads without expensive hardware investments.

The bone-age-prediction model went from an initial baseline test result of 1.42 images per second to a final tested rate of 267.1 images per second after optimizations – an increase of 188 times. The lung-segmentation model surpassed the target of 15 images per second by improving from a baseline of 1.9 images per second to 71.7 images per second after optimizations.

Running healthcare deep learning workloads on CPU-based devices offers direct benefits to companies like Philips, because it allows them to offer AI-based services that do not drive up costs for their end customers, according to Intel. As shown in this test, companies like Philips can offer AI algorithms for download through an online store as a way to increase revenue and differentiate themselves from growing competition.

Multiple trends are contributing to this shift:

  • As medical image resolution improves, medical image file sizes are growing – many images are 1GB or greater;
  • More healthcare organizations are using deep learning inference to more quickly and accurately review patient images; and
  • Organizations are looking for ways to do this without buying expensive new infrastructure.

For more information: www.intel.com, www.usa.philips.com/healthcare

 

Related Content

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
The paradox is that COVID-19 has manifested the critical need for exactly what the rules require: advancement of interoperability and digital online access to clinical data and imaging, at scale, for care coordination and infection control.

The paradox is that COVID-19 has manifested the critical need for exactly what the rules require: advancement of interoperability and digital online access to clinical data and imaging, at scale, for care coordination and infection control. Getty Images

Feature | Coronavirus (COVID-19) | May 28, 2020 | By Matthew A. Michela
One year after being proposed, federal rules to advance interoperability in healthcare and create easier access for p
The opportunity to converge the silos of data into a cross-functional analysis can provide immense value during the COVID-19 outbreak and in the future

Getty Images

Feature | Coronavirus (COVID-19) | May 28, 2020 | By Jeff Vachon
In the midst of the coronavirus pandemic normal
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
In April, the U.S. Food and Drug Administration (FDA) cleared Intelerad’s InteleConnect EV solution for diagnostic image review on a range of mobile devices.
Feature | PACS | May 27, 2020 | By Melinda Taschetta-Millane
Fast, easily accessible patient images are crucial in this day and age, as imaging and medical records take on a new
An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019. Photo by Dave Fornell.

News | Ultrasound Imaging | May 26, 2020
May 12, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a governm
 Recently the versatility of mixed and augmented reality products has come to the forefront of the news, with an Imperial led project at the Imperial College Healthcare NHS Trust. Doctors have been wearing the Microsoft Hololens headsets whilst working on the front lines of the COVID pandemic, to aid them in their care for their patients. IDTechEx have previously researched this market area in its report “Augmented, Mixed and Virtual Reality 2020-2030: Forecasts, Markets and Technologies”, which predicts th

Doctors wearing the Hololens Device. Source: Imperial.ac.uk

News | Artificial Intelligence | May 22, 2020
May 22, 2020 — Recently the versatility of
In response to the significant healthcare delivery changes brought on by COVID-19, Varian has launched new capabilities for its Noona software application, a powerful tool designed to engage cancer patients in their care for continuous reporting and symptom monitoring.
News | Radiation Oncology | May 21, 2020
May 21, 2020 — In response to the significant healthcare delivery changes brought on by...
NucleusHealth, a provider of cloud-based medical image management technology and teleradiology services, announced today that it has received Conformité Européene (CE) Mark approval for Nucleus.io.
News | Teleradiology | May 21, 2020
May 21, 2020 — NucleusHealth, a provider of cloud-based medical image management technology and teleradiology service