News | Artificial Intelligence | August 15, 2018

Tests demonstrate significant speed improvements in bone-age-prediction modeling and lung segmentation

Intel and Philips Demonstrate CPU Ability in Deep Learning Inference Test Cases

August 15, 2018 — Intel and Philips recently tested two healthcare uses for deep learning inference models using Intel Xeon Scalable processors and the OpenVINO toolkit. One use case focused on X-rays of bones for bone-age-prediction modeling, the other on computed tomography (CT) scans of lungs for lung segmentation. In these tests, Intel and Philips achieved a speed improvement of 188 times for the bone-age-prediction model, and a 38 times speed improvement for the lung-segmentation model over the baseline measurements.

Until recently, there was one prominent hardware solution to accelerate deep learning: graphics processing unit (GPUs). By design, GPUs work well with images, but they also have inherent memory constraints that data scientists have had to work around when building some models.

Central processing units (CPUs) – in this case Intel Xeon Scalable processors – do not have those same memory constraints and can accelerate complex, hybrid workloads, including larger, memory-intensive models typically found in medical imaging. For a large subset of artificial intelligence (AI) workloads, Intel Xeon Scalable processors can better meet data scientists’ needs than GPU-based systems, according to Intel. As Philips found in the two recent tests, this enables the company to offer AI solutions at lower cost to its customers.

AI techniques such as object detection and segmentation can help radiologists identify issues faster and more accurately, which can translate to better prioritization of cases, better outcomes for more patients and reduced costs for hospitals.

Deep learning inference applications typically process workloads in small batches or in a streaming manner, which means they do not exhibit large batch sizes. CPUs are more suited for low batch or streaming applications. In particular, Intel Xeon Scalable processors offer an affordable, flexible platform for AI models – particularly in conjunction with tools like the OpenVINO toolkit, which can help deploy pre-trained models for efficiency, without sacrificing accuracy.

These tests show that healthcare organizations can implement AI workloads without expensive hardware investments.

The bone-age-prediction model went from an initial baseline test result of 1.42 images per second to a final tested rate of 267.1 images per second after optimizations – an increase of 188 times. The lung-segmentation model surpassed the target of 15 images per second by improving from a baseline of 1.9 images per second to 71.7 images per second after optimizations.

Running healthcare deep learning workloads on CPU-based devices offers direct benefits to companies like Philips, because it allows them to offer AI-based services that do not drive up costs for their end customers, according to Intel. As shown in this test, companies like Philips can offer AI algorithms for download through an online store as a way to increase revenue and differentiate themselves from growing competition.

Multiple trends are contributing to this shift:

  • As medical image resolution improves, medical image file sizes are growing – many images are 1GB or greater;
  • More healthcare organizations are using deep learning inference to more quickly and accurately review patient images; and
  • Organizations are looking for ways to do this without buying expensive new infrastructure.

For more information: www.intel.com, www.usa.philips.com/healthcare

 


Related Content

News | Imaging Software Development

May 20, 2025 – Intelerad, a provider of medical imaging software solutions, recently announced its prime partnership ...

Time May 21, 2025
arrow
News | Teleradiology

May 21, 2025 — Konica Minolta Healthcare Americas, Inc and NewVue have announced the introduction of Exa Teleradiology ...

Time May 21, 2025
arrow
News | Artificial Intelligence

May 15, 2025 – Royal Philips, a global leader in health technology, has released its 10th annual Future Health Index ...

Time May 19, 2025
arrow
News | Artificial Intelligence

May 14, 2025 – Bialogics Analytics Inc., a leader in radiology informatics, has introduced its new AI solution AI ...

Time May 16, 2025
arrow
News | Computed Tomography (CT)

May 15, 2025 — GE HealthCare has launched CleaRecon DL, technology powered by a deep-learning algorithm, to improve the ...

Time May 15, 2025
arrow
News | Artificial Intelligence

May 6, 2025 — NewVue.ai, a leader in cloud-native radiology workflow orchestration, and MD.ai, a pioneer in AI-enhanced ...

Time May 06, 2025
arrow
News | Radiation Oncology

May 2, 2025 — GE HealthCare has announced an intended expansion of its radiation oncology portfolio as well as the ...

Time May 03, 2025
arrow
News | Cardiac Imaging

April 30, 2025 – Viz.ai, the leader in AI-powered disease detection and intelligent care coordination, has launched Viz ...

Time May 02, 2025
arrow
News | X-Ray

May 01, 2025 — Researchers from the Rajpurkar Lab in the Department of Biomedical Informatics at Harvard Medical School ...

Time May 01, 2025
arrow
News | Lung Imaging

April, 15, 2025 — Optellum has entered an agreement with Bristol Myers Squibb to leverage AI in early diagnosis and ...

Time April 17, 2025
arrow
Subscribe Now