Technology | July 25, 2007

Innovative Physics Device May Revolutionize Cancer Treatment

Using innovative physics, researchers have proposed a system that may one day bring proton therapy, a state-of-the-art cancer treatment method currently available only at a handful of centers, to radiation treatment centers and cancer patients everywhere. Compared to the X-rays conventionally used in radiation therapy, protons are potentially more effective, as they can deposit more cell-killing energy in their tumor targets and less in surrounding healthy tissue. However, to kill tumors, the protons must be accelerated to sufficiently high energies, which currently must be achieved in large, expensive devices called cyclotrons or synchrocyclotrons that cost hundreds of millions of dollars and occupy a room the size of basketball courts.

Thomas Mackie, a professor at the University of Wisconsin and co-founder of the radiation therapy company TomoTherapy, will present a proton-therapy design based on a much smaller device known as a "dielectric wall accelerator" (DWA). Currently being built as a prototype at Lawrence Livermore National Laboratory, the DWA can accelerate protons to up to 100 million electron volts in just a meter. A two-meter DWA could potentially supply protons of sufficiently high energy to treat all tumors, including those buried deep in the body, while fitting in a conventional radiation treatment room.

The DWA is a hollow tube whose walls consist of a very good insulator (a dielectric). When most of the air is removed from the tube to create a vacuum, the tube can structurally withstand the very high electric-field gradations necessary for accelerating protons to high energies in a short distance.

In addition to its smaller size, a DWA-based proton therapy system would have another benefit—it could vary both proton energy and proton-beam intensity, two variables that cannot both be adjusted at the same time in existing proton-treatment facilities. This capability could lead to "intensity-modulated proton therapy" (IMPT), the proton version of the x-ray-based intensity modulated radiation therapy (IMRT) technique which has become a popular method for delivering precise radiation doses to the parts of a tumor. Mackie cautions that clinical trials of the system are at least five years away. But if the DWA approach proves feasible, protons may eventually represent a widespread, rather than limited, option for treating cancer.

Related Content

Mevion Receives 510(k) Clearance for Hyperscan Pencil Beam Scanning Proton Therapy
Technology | Proton Therapy | January 04, 2018
Mevion Medical Systems has received U.S. Food and Drug Administration (FDA) 510(k) clearance for the Mevion S250i...
MEDraysintell Downgrades Proton Therapy Market Projection for 2030
News | Proton Therapy | January 02, 2018
MEDraysintell recently downgraded its projection for proton therapy rooms expected to be operational in 2030 from 1,200...
RaySearch Releases RayStation 7 Radiotherapy Treatment Planning System
Technology | Treatment Planning | December 19, 2017
RayStation 7, the latest release of RaySearch’s radiation therapy treatment planning system, adds new functionality and...
Baptist Hospital's Miami Cancer Institute Treats First Patient With Proteus Plus Proton Therapy
News | Proton Therapy | December 19, 2017
December 19, 2017 — IBA (Ion Beam Applications SA) announced that Miami Cancer Institute treated its first patients,
Mevion Achieves CE Mark for S250i Proton Therapy System
News | Proton Therapy | November 21, 2017
November 21, 2017 — Mevion Medical Systems announced the Mevion S250i...
RayStation Selected for New Tennessee Proton Therapy Center
News | Treatment Planning | November 20, 2017
November 20, 2017 — Provision Healthcare has selected RayStation for external beam planning at the new Provision Care
Proton therapy doesn’t get as near to the heart and other internal organs as X-ray therapy does. (Image courtesy of Provision Cares Proton Therapy Center.)

Proton therapy doesn’t get as near to the heart and other internal organs as X-ray therapy does. (Image courtesy of Provision Cares Proton Therapy Center.)

Feature | Proton Therapy | November 06, 2017 | By Larisa Brass, MPH
Thirty-three. Twenty-nine. Sixty-four. These are the ages of the breast cancer patients who have walked through the...
PTCOG-NA Studies Address Cost and Coverage Issues With Proton Therapy
News | Proton Therapy | November 01, 2017
Physicians from across the country gathered in Chicago last week to discuss the most recent advances in proton therapy...
Proton Therapy Lowers Treatment Side Effects in Pediatric Head and Neck Cancer Patients
News | Proton Therapy | November 01, 2017
Pediatric patients with head and neck cancer can be treated with proton beam therapy (PBT) instead of traditional...
Proton Therapy Shows Promising Clinical Benefits for Esophageal, Prostate and Breast Cancer
News | Proton Therapy | October 30, 2017
The National Association for Proton Therapy (NAPT) announced a number of clinical papers showing promising results were...
Overlay Init