Sponsored Content | Case Study | Radiation Therapy | September 30, 2019

Hypofractionation in the Age of Value-based Care

Today, Tomorrow and the Future. Are You Ready?

eBook on Hypofractionation in the Age of Value-based Care

eBook on Hypofractionation in the Age of Value-based Care

Radixact System with Synchrony

Radixact System with Synchrony

Hypofractionated and ultrahypofractionated radiation therapy — increasing dose per fraction to enable significantly fewer overall treatments — promises to unlock significant wins for public and private healthcare providers as well as the radiation oncology teams at the patient end of cancer treatment. While the drivers for hypofractionated procedures such as stereotactic body radiotherapy (SBRT) have been clear for some time — improved patient experience, increase d patient throughput and reduced cost of care — the challenge now is to identify new treatment tools and protocols to realize these clinical and economic outcomes at scale.

For starters, clinicians need the ability to maintain submillimeter accuracy and precision throughout treatment delivery — identifying the target location in the body; automatically detecting, tracking and correcting for target motion; and accurately repointing the beam in real-time to support the clinical use of smaller margins to reduce the side-effects of treatment. Between treatment fractions, radiation oncology teams also need tools to efficiently and seamlessly rework treatment plans to account for anatomical changes (see “Adaptive planning,” below). What’s more, none of this cutting-edge functionality can come at the expense of system versatility or patient throughput.

Put another way: the new standard in hypofractionated radiation therapy will be a treatment system that can deliver the highest level of accuracy and precision to both stationary and moving targets, along with the “workhorse versatility” to efficiently treat the full range of clinical indications.

To learn more, download the Accuray eBook on Hypofractionation in the Age of Value-based Care here: https://www.accuray.com/ebook/

Related Content

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure

Arizona State University researchers (in collaboration with Banner MD Anderson Cancer Center) have discovered a biocompatible cost-effective hydrogel that can be used to monitor therapeutic doses of ionizing radiation by becoming more pink with increasing radiation exposure. This picture shows a circle of hydrogel that was irradiated on the left half, which is slightly pink; whereas the right half of the gel is not irradiated and remains colorless.

News | Radiation Therapy | February 18, 2020
February 18, 2020 — More than half of all cancer patients undergo radiation therapy and the dose is critical.
Varian announced it has received FDA 510(k) clearance for its Ethos therapy, an Adaptive Intelligence solution. Ethos therapy is an artificial intelligence (AI)-driven holistic solution that provides an opportunity to transform cancer care.
News | Image Guided Radiation Therapy (IGRT) | February 11, 2020
February 11, 2020 — Varian announced it has received FDA 510(k) c
Accuray TomoTherapy total body irradiation
News | Radiation Therapy | February 07, 2020
February 7, 2020 — Accuray Incorporated announced that two new studies demonstrate the benefits of the ...
The luminescent oxygen probe PtG4 is injected during the week of radiation treatment and localizes between the cells of the tumor as illustrated by microscopy

An oxygen map image recovered from a mouse undergoing radiation therapy. The luminescent oxygen probe PtG4 is injected during the week of radiation treatment and localizes between the cells of the tumor as illustrated by microscopy (red). Image courtesy of Brian Pogue, PhD

News | Radiation Therapy | February 03, 2020
February 3, 2020 — Oxygen in cancer tumors is known to be a major factor that helps radiation therapy be successful.
Six of the top 20 radiotherapy stories in 2019 involved proton therapy. This includes two video inetrviews shot during a site visit to the Northwestern Medicine Proton Center in the Chicago suburb of Warrenville, Ill.

Six of the top 20 radiotherapy stories in 2019 involved proton therapy. This includes two video inetrviews shot during a site visit to the Northwestern Medicine Proton Center in the Chicago suburb of Warrenville, Ill.

Feature | Radiation Oncology | January 03, 2020 | Dave Fornell, Editor
January 3, 2020 — Here is the top 20 pieces of radiation oncology content on the Imaging Technology News (ITN) websit
Artificial intelligence was by far the hottest topic in both radiology and radiation oncology in 2019, and AI is the subject of 8 of the top 2019 ITN videos. This image is a prostate treatment plan created autonomously by an AI algorithm from RaySearch and is the subject of the No. 2 video on the list. Deep learning in radiology and radiation oncology.

Artificial intelligence was by far the hottest topic in both radiology and radiation oncology in 2019, and AI is the subject of 8 of the top 2019 ITN videos. This image is a prostate treatment plan created autonomously by a machine learning algorithm from RaySearch and is the subject of the No. 2 video on the list. 

Feature | December 30, 2019
Here are the top 20 best performing videos posted on the Imaging Technology News website (ITN) from the past year, ba
Beamscan MR for ViewRay MRIdian and for Elekta Unity

Beamscan MR for ViewRay MRIdian and for Elekta Unity

News | Radiation Therapy | December 23, 2019
December 23, 2019 — The Beamscan MR motorized 3-D...
radiation exposure triggers an immune response in the brain that severs connections between nerve cells
News | Clinical Trials | December 17, 2019
December 17, 2019 — One of the potentially life-altering side effects that patients experience after...