News | Radiation Therapy | February 09, 2016

HPV Status Determines Radiation Resistance of Head and Neck Cancers

UCLA study finds HPV-negative cancer cells are more easily converted into head and neck cancer stem cells than those that are HPV-positive

radiation therapy, head and neck cancers, HPV status, UCLA study

February 9, 2016 — Head and neck cancers that test positive for the herpes papilloma virus (HPV) are known to respond more favorably to radiation therapy than those that test HPV-negative, but an explanation for these differences has remained elusive.

Now, UCLA scientists have shown for the first time that radiation treatment transforms cancer cells into head and neck cancer stem cells — which are known to be resistant to radiation therapy — more effectively when the cancer tests negative for HPV. These findings shed light on why some head and neck cancers fair much worse after radiation therapy despite optimum treatment regimens.

Led by UCLA Jonsson Comprehensive Cancer Center members Erina Vlashi, M.D., and Frank Pajonk, M.D., the study showed the non-stem cancer cells that survived radiation therapy had the ability to convert into cancer stem cells, which have shown to be more resistant to radiation treatment. The process, called “radiation-induced conversion,” happened at a higher frequency in HPV-negative head and neck cancers, providing a clinically relevant explanation for the differences in response to radiation therapy.

The team reviewed 162 head and neck squamous carcinomas (HNSCCs) patients over a two-year period, and confirmed that their outcomes were correlated with their HPV status.

The study was built upon Vlashi and Pajonk’s previous research in breast cancer, which showed that therapy-resistant cancer cells are more prone to therapy-induced conversion depending on the aggressiveness of the type of breast cancer.

While radiation therapy may have some unwanted consequences, it remains an indispensable treatment for people with the disease. Further studies are currently underway to identify drugs that can interfere with radiation-induced conversion, said Vlashi.

The scientists hope this research will lead to a new type of combination treatment to improve the response of head and neck tumor cells to radiation therapy.

The study is available online in the International Journal of Radiation Oncology, Biology and Physics.

For more information: www.redjournal.org

Related Content

RayStation Replacing Existing Treatment Planning System at Leeds Cancer Centre
News | Treatment Planning | September 24, 2018
RaySearch recently strengthened its position in the U.K. market with a major order for the treatment planning system...
Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Amar Kishan, M.D.

Amar Kishan, M.D.

News | Prostate Cancer | September 11, 2018
UCLA researchers have discovered that a combination of high doses of...
Videos | Radiation Therapy | September 07, 2018
A discussion with Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke University Clinical Imaging Physics Gr
Boston Scientific to Acquire Augmenix Inc.
News | Patient Positioning Radiation Therapy | September 07, 2018
Boston Scientific has entered into a definitive agreement to acquire Augmenix Inc., a privately-held company which has...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...