News | February 05, 2015

Findings suggest blocking one or more genes might offer effective new treatment for recurrent, treatment-resistant GBM

glioblastoma multiforme, GBM, OSUCCC James, radiation therapy, study

February 5, 2015 — A new study identifies several genes that together enable a lethal form of brain cancer to recur and progress after radiation therapy. The findings might lead to new therapies that target cancer stem cells, say researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James), who led the study.

The work focused on the brain cancer glioblastoma multiforme (GBM). It investigated a subset of cancer cells within those tumors that behave like stem cells and that sometimes survive radiation therapy. To understand how those cancer stem-like cells survive irradiation, the researchers examined the cancer-related gene EZH2, which is unregulated in GBM and other cancers.

They discovered that in GBM stem-like cells – but not in other tumor cancer cells or in healthy body cells – EZH2 is regulated by a gene called MELK in combination with a second gene, FOXM1. The interaction of the three genes helps the cells survive therapy.

The findings are published in the journal Stem Cell Reports.

“Currently, GBM is treated surgically followed by radiation therapy and chemotherapy, but these tumors often recur, and patients generally survive less than two years, so we badly need new treatments,” says principal investigator Ichiro Nakano, M.D., Ph.D., associate professor in the division of neurological surgery and a researcher in the OSUCCC – James Translational Therapeutics Program. “Our findings suggest that MELK inhibitors can be applicable to brain and other cancers as a novel cancer stem cell-directed therapy.”

In earlier research, Nakano and his colleagues showed that MELK is highly expressed in glioblastoma stem-like cells, and that over-expression is correlated with poor patient survival.

For this study, Nakano and his colleagues used cells dissociated from GBM tumors, a mouse model and the roundworm Caenorhabditis elegans. Key findings include:

  • MELK and EZH2 proteins occur together in a subset of tumor cells;
  • Without MELK, GBM cells are more sensitive to irradiation; when MELK is restored, the cells become resistant to radiation;
  • Recurrent GBM tumors have higher numbers of MELK- and EZH2-positive cells than newly diagnosed tumors;
  • MELK and the oncogenic transcription factor FOXM1 form a complex that drives EZH2 expression;
  • Levels of MELK, FOXM1 and EZH2 are strongly linked to patient prognosis.

 

“Taken together, our data suggest that MELK upregulation after irradiation promotes radiation resistance, and tumor development and progression,” Nakano says.

For more information: www.cancer.osu.edu


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Radiation Oncology

July 11, 2024 — The American Society for Radiation Oncology (ASTRO) issued the following statement from Jeff M ...

Time July 11, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 09, 2024
arrow
News | Radiation Oncology

July 9, 2024 — Insights from the latest Mordor Intelligence report, “Radiotherapy Market Size & Share Analysis - Growth ...

Time July 09, 2024
arrow
News | Prostate Cancer

July 5, 2024 — Lantheus Holdings, Inc., a leading radiopharmaceutical-focused company committed to enabling clinicians ...

Time July 05, 2024
arrow
News | Radiology Business

July 3, 2024 — The American Society of Radiologic Technologists has launched the BeRAD Professionalism Award to ...

Time July 03, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | Artificial Intelligence

June 11, 2024 — A new study led by researchers at Emory AI.Health, published in the Journal of Computers in Medicine and ...

Time June 11, 2024
arrow
News | Breast Imaging

June 7, 2024 — Scholars and studies funded by Susan G. Komen(R), the world’s leading breast cancer organization ...

Time June 07, 2024
arrow
News | Radiopharmaceuticals and Tracers

June 7, 2024 — Shine Technologies, LLC, a pioneer in next-generation fusion-based technology, today announced a new ...

Time June 07, 2024
arrow
Subscribe Now