News | Artificial Intelligence | June 26, 2017

Fujitsu Develops AI-Based Technology to Retrieve Similar Disease Cases in CT Inspections

Technology retrieved similar cases correctly at a rate of 85 percent in an evaluation by Hiroshima University

Fujitsu Develops AI-Based Technology to Retrieve Similar Disease Cases in CT Inspections

Newly developed technology to retrieve similar cases. Image courtesy of Fujitsu.

June 26, 2017 — Fujitsu Laboratories Ltd. announced development of a technology to retrieve similar disease cases from a computed tomography (CT) database of previously taken images. The technology, jointly developed with Fujitsu R&D Center Co. Ltd., works by retrieving similar cases of abnormal shadows expanding in a three-dimensional manner.

Technologies already exist to retrieve similar cases based on CT images for such diseases as early-stage lung cancer, in which abnormal shadows are concentrated in one place. For diffuse lung diseases like pneumonia, however, in which abnormal shadows are spread throughout the organ in all directions, it has been necessary for doctors to reconfirm three-dimensional similarities, increasing the time needed to reach a conclusion.

Now Fujitsu Laboratories has developed an artificial intelligence (AI)-based technology that can accurately retrieve similar cases in which abnormal shadows have spread in three dimensions. The technology automatically separates the complex interior of the organ into areas through image analysis, and uses machine learning to recognize abnormal shadow candidates in each area. By dividing up the organ spatially into periphery, core, top, bottom, left and right, and focusing on the spread of the abnormal shadows in each area, it becomes possible to view things in the same way doctors do when determining similarities for diagnosis. In joint research with Prof. Kazuo Awai of the Department of Diagnostic Radiology, Institute and Graduate School of Biomedical Sciences, Hiroshima University, this technology was tested using real-world data, and the result was an accuracy rate of 85 percent in the top five retrievals among correct answers predetermined by doctors. This technology is expected to lead to increased efficiency in diagnostic tasks for doctors, and could reduce the time required to identify the correct diagnosis for cases in which identification previously took a great deal of time.

Going forward, Fujitsu Laboratories will conduct numerous field trials using CT images for a variety of cases, while additionally aiming to contribute to the increased efficiency of medical care by deploying this technology with related solutions from Fujitsu Limited.

“The fact that we have been able to demonstrate the possibility of retrieving CT images where abnormal shadows have similar natures and three-dimensional distribution has important medical implications. Moving forward, this technology has the potential to provide doctors with clinically useful information by retrieving similar CT images from cases that were difficult to diagnose and treat, and we can anticipate that this will improve the accuracy and efficiency of medical care. By grouping morphologically similar images, and investigating whether there are any common genetic abnormalities within these groups, the technology may present new ways of thinking about diseases and offers the possibility of numerous clinical applications. It's a technology that we have great expectations for in the future,” said Awai.

Details of this technology will be announced at the Pattern Recognition and Media Understanding (PRMU) conference to be held by the Institute of Electronics, Information and Communication Engineers at Tohoku University (Sendai, Miyagi prefecture) on June 22-23.

For more information: www.fujitsu.com

Related Content

Novel Technique May Significantly Reduce Breast Biopsies
News | Breast Biopsy Systems | January 17, 2019
A novel technique that uses mammography to determine the biological tissue composition of a tumor could help reduce...
Artificial Intelligence Used in Clinical Practice to Measure Breast Density
News | Artificial Intelligence | January 15, 2019
An artificial intelligence (AI) algorithm measures breast density at the level of an experienced mammographer,...
Sponsored Content | Videos | Artificial Intelligence | January 15, 2019
ITN Contributing Editor Greg Freiherr offers an overview of...
Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Videos | Interventional Radiology | January 11, 2019
Julius Chapiro, M.D., research faculty member and an...
AI Approach Outperformed Human Experts in Identifying Cervical Precancer
News | Digital Pathology | January 10, 2019
January 10, 2019 — A research team led by investigators from the National Institutes of Health and Global Good has de
Artificial intelligence, also called deep learning and machine learning, was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting.

Artificial intelligence was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting, which included a large area with its own presentation therater set asside for AI vendors.

Feature | Artificial Intelligence | January 10, 2019 | Dave Fornell, Editor
Hands down, the hottest topic in radiology the past two years has been the implementation of...
3-D Reconstruction of Ichthyosaurus Skull

A 3-D reconstruction of the ichthyosaurus skull from a computed tomography (CT) scan. Image courtesy of Nigel Larkin, taken at Royal Veterinary College, London.

News | Computed Tomography (CT) | January 09, 2019
A nearly meter-long skull of a giant fossil marine ichthyosaur found in a farmer's field more than 60 years ago has...
SCCT Releases New Guideline for CT Use During TAVR
News | Computed Tomography (CT) | January 08, 2019
The Society of Cardiovascular Computed Tomography (SCCT) has released a new expert consensus document for computed...
Artificial Intelligence Pinpoints Nine Different Abnormalities in Head Scans

A brain scan (left) showing an intraparenchymal hemorrhage in left frontal region and a scan (right) of a subarachnoid hemorrhage in the left parietal region. Both conditions were accurately detected by the Qure.ai tool. Image courtesy of Nature Medicine.

News | Artificial Intelligence | January 07, 2019
The rise in the use of computed tomography (CT) scans in U.S. emergency rooms has been a well-documented trend1 in...