News | Focused Ultrasound Therapy | June 23, 2020

Focused Ultrasound Shows Promise Against Deadliest Brain Tumor

Neurosurgeon Jason Sheehan, M.D., Ph.D., of UVA Health, is pioneering the use of focused ultrasound to treat glioblastoma, the deadliest brain tumor. Image courtesy of UVA Health

Neurosurgeon Jason Sheehan, M.D., Ph.D., of UVA Health, is pioneering the use of focused ultrasound to treat glioblastoma, the deadliest brain tumor. Image courtesy of UVA Health

June 23, 2020 — An innovative use of focused ultrasound being pioneered at the University of Virginia School of Medicine is showing promise against glioblastoma, the deadliest brain tumor, and could prove useful against other difficult-to-treat cancers.

The technique hits cancer cells with a drug that sensitizes them to sound waves, then blasts them with focused ultrasound. The sound waves create tiny bubbles inside the cancer cells, causing them to die.

The work is early, with researchers testing the concept on cell samples in lab dishes. But their results suggest the technique has "substantial potential for treatment of malignant brain tumors and other challenging oncology indications," such as lung cancer, breast cancer and melanoma, the researchers report in a new scientific paper. They predict the technique will be particularly useful in treating cancers in sensitive parts of the body that are difficult to access.

"Sonodynamic therapy with focused ultrasound offers a new therapeutic approach to treating patients with malignant brain tumors," said UVA Health neurosurgeon Jason Sheehan, M.D., Ph.D. "This approach combines two approved options, [the drug] 5-ALA and focused ultrasound, to produce a powerful tumoricidal effect on several different types of glioblastomas."

Aggressive Glioblastoma

Glioblastomas are the most common malignant brain tumors in adults. They are inevitably fatal, typically within 12 to 18 months of diagnosis. The shortage of effective treatments for this aggressive cancer means new approaches are needed desperately.

To evaluate the potential of their new focused ultrasound technique, the UVA researchers looked at its effects on both rat and human cell samples. They examined the benefits of the "sonosensitizing" drug, 5-ALA, and focused ultrasound individually and in combination, and they found that the pairing was far more effective than either alone. The drug reduced the number of viable cancer cells by 5%, while focused ultrasound reduced it by 16%. Together, the reduction was 47%.

"Focused ultrasound has the potential to improve outcomes for patients with complex brain tumors and other neurosurgical pathologies," Sheehan said. "We may be at the tip of the iceberg in terms of intracranial indications for focused ultrasound."

Busting Cancer With Bubbles

Many applications of focused ultrasound rely on the technology's ability to create tiny points of heat inside the body to burn away harmful cells, or to damage cells enough to provoke an immune response. Sheehan's approach is notable in that it takes another tack, destroying cancer cells without generating heat.

To test out the new technique, the researchers had to develop custom equipment so they could perform the focused ultrasound research on the cell samples. They did this from scratch, using a 3-D printer and software at the Charlottesville-based Focused Ultrasound Foundation, a longtime supporter of focused ultrasound research at UVA and elsewhere.

The researchers say the new platform will advance focused ultrasound research in the future. Using it, scientists can quickly screen cell types and sonosensitizing drugs like the one used in UVA's study. It will also be a benefit in pre-clinical and clinical testing in people, they say.

Pioneering Focused Ultrasound

While the sonosensitizing research is in its earliest phases, Sheehan is launching a separate glioblastoma clinical trial in people using a different focused ultrasound approach. That study will evaluate the technology's potential to open the brain's protective barrier briefly so that doctors can deliver treatments to the tumor that they normally can't.

Sheehan's research is part of a broad effort at UVA to explore the potential of focused ultrasound to treat various types of diseases. For example, UVA researchers are examining the technology's ability to treat breast cancer and epilepsy.

Pioneering research by UVA neurosurgeon Jeff Elias, M.D., already paved the way for the federal Food and Drug Administration to approve focused ultrasound to treat essential tremor, a common movement disorder, and tremor caused by Parkinson's disease. Focused ultrasound treatment for those conditions is now available to appropriate patients. Learn more about focused ultrasound at UVA.

Glioblastoma Results Published

Sheehan and his colleagues have published their initial glioblastoma results in the Journal of Neuro-Oncology. The research team consisted of Kimball Sheehan, Darrah Sheehan, Mohanad Sulaiman, Frederic Padilla, David Moore, Sheehan and Zhiyuan Xu. Padilla and Moore are employed by the Focused Ultrasound Foundation.

For more information: uvahealth.com

Related Content

Image courtesy of GE Healthcare

Feature | Mobile C-Arms | July 08, 2020 | By Melinda Taschetta-Millane
Moblie C-arms have seen several advances over the past de
 Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Investigators led by a team at Massachusetts General Hospital (MGH) now describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated functionally intact brain connections and weeks later he recovered the ability to follow commands

Getty Images

News | Coronavirus (COVID-19) | July 08, 2020
July 8, 2020 — Many patients with severe coronavirus disease 2019 (...
Fujifilm’s Sonosite SII POC ultrasound system helps to keep crowded areas clearer with a small ultrasound footprint.

Fujifilm’s Sonosite SII POC ultrasound system helps to keep crowded areas clearer with a small ultrasound footprint.

Feature | Ultrasound Imaging | July 07, 2020 | By Joan Toth
With the miniaturization of technology, improved ease of use, lower system cost, increased portability and greater ac
A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

News | Magnetic Resonance Imaging (MRI) | July 02, 2020
July 2, 2020 — Axonics Modulation Technologies, Inc., a medical technology company that has developed and is commerci
This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
Researchers reviewed results of prostate biopsies on over 3,400 men who had targets identified on prostate MRI and found that the positive predictive value of the test for prostate cancer was highly variable at different sites
News | Prostate Cancer | July 01, 2020
July 1, 2020 — Prostate MRI is an emerging technology used to identify and guide treatment for...
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...