Technology | September 09, 2013

FDA Clears Siemens’ Symbia Intevo Integrated SPECT and CT System

?World’s first xSPECT system completely integrates SPECT and CT?

xSPECT, SPECT/CT, Siemens Intevo

A comparison showing standard SPECT/CT imaging (left) and the much clearer xSPECT imaging that combines the image data from the two modalities for improved quality.

xSPECT, SPECT/CT, Siemens Intevo

The Symbia Intevo system when it was unveiled in June at the Society of Nuclear Medicine and Molecular Imaging (SNMMI).

xSPECT, SPECT/CT, Siemens Intevo
September 9, 2013 — The U.S. Food and Drug Administration (FDA) has granted 510(k) market clearance for Siemens’ Symbia Intevo, the first system to completely integrate high sensitivity of single-photon emission computed tomography (SPECT) with the high specificity of computed tomography (CT) into a single modality, rather than imaging as separate overlay images. Siemens is calling the combined imaging modality technology xSPECT. 
 
It completely integrates data from both modalities. Symbia Intevo generates high resolution and, for the first time, quantitative images. In traditional SPECT/CT imaging, the SPECT image has always been reconstructed at a low-resolution matrix — much lower than the CT portion of the exam. As a result, the CT resolution must be downgraded dramatically to the level of SPECT to enable mechanical fusion of the two modalities. xSPECT combines the images into a new, completely integrated single dataset for vastly higher resolution and quantitative images. 
 
Aimed at the oncology market to start, an example of the imaging display at the Society of Nuclear Medicine and Molecular Imaging (SNMMI) in June showed a traditional SPECT/CT spinal image with hot spots, but the low resolution makes it unclear if the areas of enhancement are tumors or inflammation. The combined xSPECT image greatly enhanced resolution to show the hot spots were actually inflammation caused by clearly defined spinal compression fractures. The clear, fused image also eliminates the alignment artifacts common with hybrid imaging, where the SPECT and CT images do not exactly match anatomical boundaries. The vendor said centers using the system in trials are reading the xSPECT image rather than going back and forth between the usual collage of three images showing the SPECT, CT and combined overlay image.
 
SPECT has traditionally been dubbed “unclear” instead of “nuclear” imaging due to its low image quality, said Mike Rittman, senior manager, product marketing, Siemens molecular imaging. He explained xSPECT offers a way to greatly clarify the image with CT-like quality. Instead of an incremental technology advance, Rittman said this is a major step forward for SPECT, involving 10 years of development and 32 pounds worth of paperwork submitted to the FDA for the approval process. 
 
Higher Resolution Frame of Reference?
In conventional SPECT/CT imaging, the SPECT image has always been reconstructed using SPECT's low-fidelity frame of reference. For this reason, the CT resolution has been downgraded dramatically to the level of SPECT to enable the mechanical fusion of both datasets. Siemens’ new xSPECT modality reconstructs both the SPECT and CT portions of the image using the high CT frame of reference for precise, accurate alignment that facilitates the extraction and deep integration of medically relevant information. This ability is also the basis for differentiating between tissue boundaries in bone imaging. With the xSPECT Bone feature, physicians can provide additional support for detection and distinguishing between cancerous lesions and degenerative disorders.
 
Quantitative SPECT?
Symbia Intevo’s precise alignment of SPECT and CT provides physicians with essential volumetric information from the CT scan, enabling accurate, consistent and reproducible quantification, a numerical indication of a tumor’s level of metabolic activity. With the xSPECT Quant feature, the physician can apply quantitative information to aid in the assessment whether a patient's course of treatment has regressed, stabilized or grown, an assessment that is difficult to make with a purely visual assessment of the tumor.
 
Reduced CT Dose?
While Symbia Intevo uses more CT data than previous system, Siemens is still able to limit patient dose by offering combined applications to reduce exposure (CARE). Unique to Siemens, these applications include the CARE Dose4D technique, which can reduce patient CT radiation dose by up to 68 percent.
 
Increased Productivity, Throughput?
Symbia Intevo also offers applications to improve productivity and patient throughput. For example, Siemens’ Autoform collimator captures up to 26 percent more counts, or photons, that are generated from radiotracer activity as compared to conventional collimators. This increased number of counts potentially reduces image acquisition time for increased patient throughput.
 
Symbia Intevo and xSPECT are not commercially available in all countries. Due to regulatory reasons, their future availability cannot be guaranteed. Please contact your local Siemens organization for further details.
 
For more information: www.siemens.com/healthcare? 
 

Related Content

New ASNC SPECT Imaging Guideline Addresses Advances in Myocardial Perfusion Imaging
News | SPECT Imaging | June 21, 2018
The American Society of Nuclear Cardiology (ASNC) has published an update to its 2010 guidelines for single photon...
FDA Clears New Imaging Functionalities for Biograph mCT PET/CT Systems
Technology | PET-CT | June 21, 2018
Siemens Healthineers will announce U.S. Food and Drug Administration (FDA) clearance of four new system features for...
PET/CT Changes Care for 59 Percent of Suspected Recurrent Prostate Cancer Cases
News | Prostate Cancer | June 13, 2018
A recently presented investigational clinical trial evaluated the impact of 18F fluciclovine positron emission...
Nuclear imaging scan showing very good tissue delineation. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Nuclear imaging scan showing very good tissue delineation. It offers crisp overall image quality and sharply delineates the muscle and fat planes, vertebral margins and end plates, billiary radicals, renal calyces, aortic wall and papillary muscles of the heart. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Technology | PET-CT | June 05, 2018
June 5, 2018 — The U.S.
Emerging Trends in Nuclear Medicine
Feature | Nuclear Imaging | June 04, 2018 | By Jeff Zagoudis
Nuclear imaging and its various modalities have long played an important role in the diagnosis and treatment of numer
PET Imaging Agent Could Provide Early Diagnosis of Rheumatoid Arthritis

Coronal 18F-FEDAC PET/CT section of a mouse with collagen-induced arthritis. (A) On day 23 and day 37, increased uptake is noted in the front and hind paws of this mouse with collagen-induced arthritis. (B) Predictive performance of day 23 18F-FEDAC uptake for the development of clinical arthritis. ROC = receiver operating characteristic; Sn = sensitivity; Sp = specificity. Credit: Seoul National University and Ewha Womans University, Seoul, South Korea

News | PET Imaging | May 17, 2018
A novel positron emission tomography (PET) tracer developed by Korean researchers can visualize joint inflammation and...
PET Imaging Shows Protein Clumping May Contribute to Heart Failure Development
News | PET Imaging | May 11, 2018
A team led by Johns Hopkins University Researchers has discovered that protein clumps appear to accumulate in the...
News | Radiopharmaceuticals and Tracers | May 09, 2018
Blue Earth Diagnostics signed an exclusive, worldwide agreement with Scintomics GmbH, Germany, a specialist in...
Novel PET Agent Could Help Guide Therapy for Brain Diseases

Rat brain 11C‐Me‐NB1 PET images (0‐60 min) superimposed on an MRI template. Credit: SD Krämer et al., ETH Zurich, Zurich, Switzerland

News | PET Imaging | April 10, 2018
Researchers have developed a new imaging agent that could help guide and assess treatments for people with various...
Overlay Init