Technology | March 04, 2014

FDA Clears Aycan Software Tool for Multi-Modal Image Fusion

Chimaera FusionSync integrated into Aycan’s OsiriX Pro workstation

Aycan Chimaera FusionSync Advanced Visualization Fusion Imaging Software

March 4, 2014 — Aycan and Chimaera GmbH received U.S. Food and Drug Administration (FDA) 510(k) clearance of Chimaera FusionSync, a software tool for more efficient handling and diagnosis of multi-modal and follow-up medical data. Available with Aycan workstation OsiriX Pro, Chimaera FusionSync was launched in Europe in 2013 with CE marking.

The Aycan workstation OsiriX Pro is an image-processing tool and DICOM PACS (picture archiving and communications system) workstation. The Chimaera FusionSync is an automatic image-registration algorithm. Together, they provide fast, reliable and automatic-rigid imaging to easily view multi-modal and follow-up series together for more efficient diagnoses. Users drag and drop two series together, then quickly navigate through large amounts of data for easy diagnosis based on spatial synchronization. Adaptions of view settings are completely eliminated, as all viewing properties are propagated to the linked series. Chimaera FusionSync currently supports 3-D computed tomography (CT), C-Arm CT, magnetic resonace imaging (MR) (including 2-D multi-slice MR), positron emission tomograophy (PET) and single positron emission computed tomography (SPECT) data, and is suited for oncology and other radiological applications where image comparison is vital.

Designed for post-processing and primary diagnosis, the 64-bit fast, Mac-based, vendor-neutral OsiriX Pro is an image-processing tool and DICOM PACS workstation for conventional, multi-slice and other image reading.

For more information: www.aycan.com

Related Content

TeraRecon Unveils iNtuition AI Data Extractor
News | Advanced Visualization | July 03, 2019
Artificial Intelligence (AI) and advanced visualization company TeraRecon announced its new iNtuition AI Data Extractor...
A 3-D printed model (left) and a model constructed in augmented reality (right), both of a kidney with a tumor. In both models, the kidney is clear; the tumor is visible in purple on the AR model and in white on the 3-D printed model.

A 3-D printed model (left) and a model constructed in augmented reality (right), both of a kidney with a tumor. In both models, the kidney is clear; the tumor is visible in purple on the AR model and in white on the 3-D printed model. Photo courtesy of Nicole Wake, Ph.D.

Feature | Advanced Visualization | July 02, 2019 | By Jeff Zagoudis
Three-dimensional (3-D) printing and...

Image courtesy of Philips Healthcare

Feature | Molecular Imaging | July 01, 2019 | By Sharvari Rale
Diagnostic procedures have always been a cornerstone of early prognosis and patient triaging.
TeraRecon Receives FDA Clearance for Northstar AI Results Explorer
Technology | Artificial Intelligence | June 20, 2019
Advanced visualization and artificial intelligence (AI) technology provider TeraRecon has successfully completed a U.S...
Materialise Receives FDA Clearance for Cardiovascular Planning Software Suite
Technology | Advanced Visualization | June 13, 2019
Three-dimensional (3-D) printing software and solutions company Materialise has received U.S. Food and Drug...
Medivis SurgicalAR Gets FDA Clearance
Technology | Virtual and Augmented Reality | June 10, 2019
Medivis announced that its augmented reality (AR) technology platform for surgical applications, SurgicalAR, has...
Ann Arbor Startup Launches Augmented Reality MRI Simulator
Technology | Virtual and Augmented Reality | June 04, 2019
SpellBound, an Ann Arbor startup specializing in augmented reality (AR) tools for children in hospitals, has officially...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Advanced Visualization | May 16, 2019
This is an example of how virtual reality is being used in neuro-radiology to better evaluate patients using advanced