News | April 27, 2008

Engineering Students Create Headset to Reduce MRI Sound

April 28, 2008 – Engineering students at the University of Florida designed a headset that may reduce the sound of loud noises produced by MRI examinations, aiming to provide a more positive experience for patients as well as reduce the number of examinations needed.

The air phones, which are similar headphones once distributed on commercial airplanes, pipe the sound via two tubes to tiny microphones connected to an amplifier and a signal processor several feet away. That processor taps an algorithm, or set of computer instructions, to produce a sound signal that is the opposite of the signal just received. That opposite signal then gets piped back through a third tube to each of the patient's ears.

Because the MRI sounds are repetitive and the piped-in sounds are timed to occur on top of the repetitions, the result is that the patient hears the same sound as he or she would have without any intervention - but at a lower volume.

Trials of the system using a loud beeping sound similar to some MRI noises showed it could reduce the noise by as much as 15 decibels. Ambient noise is about 60 decibels, with jet engines and other extremely loud noises reaching 120 decibels. The students were only able to reduce actual MRI sounds by a smaller level, but they said further tweaks of the system and algorithm are likely to improve that result.

The team's results are "significant and make a difference," said Gijs Bosman, a professor of electrical and computer engineering and the team's faculty adviser. "Based on experiments and further testing of the prototype, the team has come up with several recommendations for further improvements."

For more information: www.ufl.edu

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI) | August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
Overlay Init