News | April 27, 2008

Engineering Students Create Headset to Reduce MRI Sound

April 28, 2008 – Engineering students at the University of Florida designed a headset that may reduce the sound of loud noises produced by MRI examinations, aiming to provide a more positive experience for patients as well as reduce the number of examinations needed.

The air phones, which are similar headphones once distributed on commercial airplanes, pipe the sound via two tubes to tiny microphones connected to an amplifier and a signal processor several feet away. That processor taps an algorithm, or set of computer instructions, to produce a sound signal that is the opposite of the signal just received. That opposite signal then gets piped back through a third tube to each of the patient's ears.

Because the MRI sounds are repetitive and the piped-in sounds are timed to occur on top of the repetitions, the result is that the patient hears the same sound as he or she would have without any intervention - but at a lower volume.

Trials of the system using a loud beeping sound similar to some MRI noises showed it could reduce the noise by as much as 15 decibels. Ambient noise is about 60 decibels, with jet engines and other extremely loud noises reaching 120 decibels. The students were only able to reduce actual MRI sounds by a smaller level, but they said further tweaks of the system and algorithm are likely to improve that result.

The team's results are "significant and make a difference," said Gijs Bosman, a professor of electrical and computer engineering and the team's faculty adviser. "Based on experiments and further testing of the prototype, the team has come up with several recommendations for further improvements."

For more information: www.ufl.edu

Related Content

MRI Metal Artifact Reduction Poses Minimal Thermal Risk to Hip Arthroplasty Implants
News | Magnetic Resonance Imaging (MRI) | May 23, 2019
Clinical metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) protocols at 3 Tesla (3T) on hip...
Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carrie Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy. Shown is the support staff for this system. In the center of the photo is Benjamin Movsas, M.D., chair of radiation oncology at Henry Ford Cancer Institute. Second from the right is Carri Glide-Hurst, Ph.D., director of translational research, radiation oncology.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...
Netherlands Hospital to Install State-of-the-Art MRI Ablation Center
News | Magnetic Resonance Imaging (MRI) | May 13, 2019
Imricor announced the signing of a commercial agreement with the Haga Hospital in The Hague, Netherlands to outfit a...
Screening MRI Detects BI-RADS 3 Breast Cancer in High-risk Patients
News | MRI Breast | May 09, 2019
When appropriate, short-interval follow-up magnetic resonance imaging (MRI) can be used to identify early-stage breast...
Clinical Trial Explores Opening Blood-Brain Barrier in Fight Against Alzheimer's

Vibhor Krishna, M.D., (right) fits David Shorr with a helmet-like device used in a new clinical trial for Alzheimer’s disease at The Ohio State University Wexner Medical Center. The device uses MRI-guided imaging to deliver focused ultrasound to specific areas of the brain to open the blood-brain barrier. Image courtesy of Ohio State University Wexner Medical Center.

News | Focused Ultrasound Therapy | May 09, 2019
May 9, 2019 — A new clinical trial at The Ohio State University Wexner Medical Center and two other sites is testing