News | Cardiovascular Ultrasound | June 27, 2018

EchoMD AutoEF Software Improves Variability in Ejection Fraction Estimation

Study results show artificial intelligence-based software has less variability in evaluating left ventricular EF than the reported average variability of cardiologists

EchoMD AutoEF Software Improves Variability in Ejection Fraction Estimation

June 27, 2018 – A recent study conducted with the Minneapolis Heart Institute found that Bay Labs’ EchoMD AutoEF deep learning software has less variability in evaluating left ventricular ejection fraction (EF) than the average variability of cardiologists reported in literature. Results of the study were presented at the 2018 American Society of Echocardiography (ASE) Annual Scientific Sessions, June 22-26 in Nashville.

Literature shows that the average variability of cardiologist readers using the Simpson’s biplane method in estimating EF is 9.2 percent. The observed variability of EchoMD AutoEF was superior at 8.29 percent (p = 0.002). The study also demonstrated that EchoMD AutoEF is an accurate and fully automated method of calculating EF from complete echocardiographic patient studies without user intervention. In addition to normal patients, it performed well on obese patients, and on patients with a range of normal and abnormal EF.

“Historically there have been challenges with variability and reproducibility in reporting of the ejection fraction, especially when the EF is not normal; our study showed that the EchoMD AutoEF algorithms can aid interpretation enormously and have less variability than cardiologists reported in literature,” said Richard Bae, M.D., FACC, director of the Echocardiography Laboratory at the Minneapolis Heart Institute and co-author of the study. “By supporting fast, efficient and accurate AI [artificial intelligence]-assisted echocardiogram analysis, the algorithms can allow physicians to focus on putting results into context for the patient — guiding prognosis and course of management.”

The study included 405 echocardiographic patient studies from Minneapolis Heart Institute representing a wide range of body mass index, EF values and of ultrasound systems. For each patient study, the Bay Labs’ software automatically selected optimal apical four-chamber and apical two-chamber digital video clips and used them to perform an EF calculation. These calculations were compared to the standard Simpson’s biplane method.

For more information: www.baylabs.io

Related Content

Graphic courtesy Pixabay

Graphic courtesy Pixabay

Feature | Artificial Intelligence | July 15, 2019 | By Greg Freiherr
Siemens has long focused on automation as a way to make diagnostic equipment faster and more efficient.
Videos | Artificial Intelligence | July 12, 2019
Khan Siddiqui, M.D., founder and CEO of HOPPR, discusses the economic advantages and costs presented by...
Videos | Digital Pathology | July 11, 2019
Toby Cornish, M.D., Ph.D., associate professor and medical director of informatics at the University of Colorado Scho
FDA Clears Koios DS Breast 2.0 AI-based Software
News | Ultrasound Women's Health | July 11, 2019
Koios Medical announced its second 510(k) clearance from the U.S. Food and Drug Administration (FDA).
360 Photos | Ultrasound Imaging | July 11, 2019
This 360 degree photo shows a basic, point-of-care cardiac echocardiogram being performed using a smartphone turned i
SimonMed Imaging Implements ProFound AI for 3-D Tomosynthesis
News | Mammography | July 10, 2019
Arizona-based SimonMed Imaging announced their implementation of the first U.S. Food and Drug Administration (FDA)-...
Researchers Use Artificial Intelligence to Deliver Personalized Radiation Therapy
News | Radiation Therapy | July 09, 2019
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to...
360 Photos | Ultrasound Imaging | July 09, 2019
A view of a mitral valve on a GE Healthcare Vivid E95 ...