News | Cardiovascular Ultrasound | June 27, 2018

EchoMD AutoEF Software Improves Variability in Ejection Fraction Estimation

Study results show artificial intelligence-based software has less variability in evaluating left ventricular EF than the reported average variability of cardiologists

EchoMD AutoEF Software Improves Variability in Ejection Fraction Estimation

June 27, 2018 – A recent study conducted with the Minneapolis Heart Institute found that Bay Labs’ EchoMD AutoEF deep learning software has less variability in evaluating left ventricular ejection fraction (EF) than the average variability of cardiologists reported in literature. Results of the study were presented at the 2018 American Society of Echocardiography (ASE) Annual Scientific Sessions, June 22-26 in Nashville.

Literature shows that the average variability of cardiologist readers using the Simpson’s biplane method in estimating EF is 9.2 percent. The observed variability of EchoMD AutoEF was superior at 8.29 percent (p = 0.002). The study also demonstrated that EchoMD AutoEF is an accurate and fully automated method of calculating EF from complete echocardiographic patient studies without user intervention. In addition to normal patients, it performed well on obese patients, and on patients with a range of normal and abnormal EF.

“Historically there have been challenges with variability and reproducibility in reporting of the ejection fraction, especially when the EF is not normal; our study showed that the EchoMD AutoEF algorithms can aid interpretation enormously and have less variability than cardiologists reported in literature,” said Richard Bae, M.D., FACC, director of the Echocardiography Laboratory at the Minneapolis Heart Institute and co-author of the study. “By supporting fast, efficient and accurate AI [artificial intelligence]-assisted echocardiogram analysis, the algorithms can allow physicians to focus on putting results into context for the patient — guiding prognosis and course of management.”

The study included 405 echocardiographic patient studies from Minneapolis Heart Institute representing a wide range of body mass index, EF values and of ultrasound systems. For each patient study, the Bay Labs’ software automatically selected optimal apical four-chamber and apical two-chamber digital video clips and used them to perform an EF calculation. These calculations were compared to the standard Simpson’s biplane method.

For more information: www.baylabs.io

Related Content

At the American Association of Physicists in Medicine (AAPM) 2019 meeting, new artificial intelligence (AI) software to assist with radiotherapy treatment planning systems was highlighted. The goal of the AI-based systems is to save staff time, while still allowing clinicians to do the final patient review. 
Feature | Treatment Planning | July 08, 2020 | By Melinda Taschetta-Millane
At the American Association of Physicists in Medicine (AAPM) 201
 Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Investigators led by a team at Massachusetts General Hospital (MGH) now describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated functionally intact brain connections and weeks later he recovered the ability to follow commands

Getty Images

News | Coronavirus (COVID-19) | July 08, 2020
July 8, 2020 — Many patients with severe coronavirus disease 2019 (...
Hologic, Inc. announced he U.S. launch of the SuperSonic MACH 40 ultrasound system, expanding the company’s suite of ultrasound technologies with its first premium, cart-based system.
News | Breast Imaging | July 08, 2020
July 8, 2020 — Hologic, Inc. announced he U.S.
Fujifilm’s Sonosite SII POC ultrasound system helps to keep crowded areas clearer with a small ultrasound footprint.

Fujifilm’s Sonosite SII POC ultrasound system helps to keep crowded areas clearer with a small ultrasound footprint.

Feature | Ultrasound Imaging | July 07, 2020 | By Joan Toth
With the miniaturization of technology, improved ease of use, lower system cost, increased portability and greater ac
A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...