News | February 14, 2013

Diffusion Abnormality Index Provides Potential Imaging Biomarker to Indicate Brain Tumor Response to Radiation Therapy

February 14, 2013 — Diffusion abnormality index (DAI) shows promise as an imaging biomarker to measure brain tumor response to radiation therapy, according to research being presented at the 2013 Cancer Imaging and Radiation Therapy Symposium. This symposium is sponsored by the American Society for Radiation Oncology (ASTRO) and the Radiological Society of North American (RSNA).

The study included 20 patients who had brain metastases and were treated with whole brain radiotherapy. The total of 45 lesions among the patients was further categorized as 16 responsive, 18 stable and 11 progressive lesions. Diffusion measurements were taken prior to radiation treatment, two weeks after the start of treatment and one month after treatment completion. For each patient, a normal tissue apparent diffusion coefficient (ADC) histogram was used to divide the tumor ADC histogram into three regions: low (high cellularity), normal and high (edema and necrosis) diffusion. Analyzing the complex behavior in ADC of brain metastases from pre-radiation therapy to two weeks after starting treatment, investigators developed a new diffusion index, the DAI, which included both low and high ADC contributions, for prediction of post-treatment tumor response.

Sensitivity and specificity of the change in DAI from pre- to the end of therapy were evaluated and compared with the changes in gross tumor volume from pre-treatment to the end of therapy. The changes were valuable in predicting non-responsive lesions post-treatment. Early prediction of brain tumor response to radiation therapy is vital in providing the most appropriate radiation doses to each lesion.

“While this review included a small number of patients, the data demonstrate that DAI may be a good biomarker to predict brain tumor response,” said lead study author Reza Farjam, a Ph.D. candidate in biomedical engineering focused on cancer functional imaging at the University of Michigan in Ann Arbor, Mich. “Further study of this method is needed to improve early prediction of tumor response to radiation therapy and to help us provide brain cancer patients with more accurate information about their treatment progress.”

Related Content

Doctor-Patient Discussions Neglect Potential Harms of Lung Cancer Screening
News | Lung Cancer | August 15, 2018
August 15, 2018 — Although national guidelines advise doctors to discuss the benefits and harms of...
Videos | Radiation Therapy | August 13, 2018
ITN Editor Dave Fornell takes a tour of some of the innovative new technologies on the expo floor at the 2018 America
Videos | Radiation Therapy | August 13, 2018
A discussion with Mahadevappa Mahesh, MS, Ph.D., FAAPM, FACR, FACMP, FSCCT, professor of radiology and cardiology and
Videos | Proton Therapy | August 10, 2018
A discussion with Matthew Freeman, Ph.D., scientist at Los Alamos National Laboratory, New Mexico.
Videos | Radiomics | August 09, 2018
A discussion with Martin Vallieres, Ph.D., post-doctoral fellow at McGill University, Montreal, Canada.
Cardiac Imaging Reveals Roots of Preeclampsia Damage in Pregnant Women
News | Women's Health | August 07, 2018
Johns Hopkins researchers say a heart imaging study of scores of pregnant women with the most severe and dangerous form...
Cardiac Monitoring a Higher Priority for High-Risk Breast Cancer Patients
News | Cardio-oncology | August 07, 2018
August 7, 2018 — While heart failure is an uncommon complication of...
Videos | AAPM | August 03, 2018
Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke Un...
Videos | Radiation Therapy | August 01, 2018
This is an example of how Cherenkov radiation glow can be collected with image intensifier cameras during radiotherap
Videos | Artificial Intelligence | August 01, 2018
A discussion with Steve Jiang, Ph.D., director of the medical...
Overlay Init