Technology | Treatment Planning | December 20, 2016

Dedicated Radiation Therapy CT System Receives FDA Clearance

CT scanner delivers RT images that enable precise contouring and personalized dose calculation while eliminating unnecessary workflow steps

Somatom Confidence RT Pro, RT, radiation therapy, treatment planning

December 20, 2016 — The U.S. Food and Drug Administration (FDA) has granted 510(k) clearance for Siemens’ Somatom Confidence Radiation Therapy (RT) Pro computed tomography (CT) scanner with features dedicated to RT planning. Together with the new, advanced version of the company’s optional syngo.via RT Image Suite software, the Somatom Confidence RT Pro helps achieve personalized scans while simultaneously enabling facilities to reach higher levels of standardization and efficiency. 

The new syngo.via RT Image Suite software complements Confidence RT Pro with integrated image assessment, contouring, and patient marking features
 
The new Somatom Confidence RT Pro is designed to deliver new RT images that challenge current practices in RT treatment planning, which favor standardization over personalization. For example, the standard RT treatment plan of every patient – regardless of age, gender, disease state, or imaging system – is built on 120 kV CT images, which are not optimized for precise contouring but enable a highly controlled workflow.

Taking into account the trend toward more advanced treatment techniques where precision is critical to high-quality care, the Somatom Confidence RT Pro enables personalized scans by delivering images that are optimized for both contouring and dose calculation. No longer limited to the traditional 120 kV tube voltage, radiation oncology professionals can now, through the Somatom Confidence RT Pro and its new DirectDensity™¹ technology, provide personalized imaging for each RT patient.

The Somatom Confidence RT Pro features the DirectDensity[1] algorithm, which can be used to reconstruct images where values can be interpreted as showing relative electron density[2] at any given kV setting, enabling seamless use of those images for treatment planning. And thanks to iMAR metal artifact reduction, task-based automated kV settings with CARE kV, and an all-new detector that enhances image quality and dual energy performance, the Somatom Confidence RT Pro can generate personalized images for all RT patients – images intended to enable optimal precision along the entire RT chain, for both confident contouring and dose calculation.

Additionally, the new syngo.via RT Image Suite software from Siemens Healthineers complements the Somatom Confidence RT Pro by helping radiation oncology professionals increase efficiency with integrated image assessment, contouring, and patient marking features in one solution. Its flexible client-server based architecture enables easy adaptation to the needs of RT staff regardless of location – be it the CT console, the physician’s office, or the dosimetry lab. And developed with an eye toward scalability, syngo.via RT Image Suite can grow with the needs of the RT department, from straightforward simulation tools to complex, interdepartmental, multi-modality workflow and task support, Siemens said.

syngo.via RT Image Suite can help users open new clinical avenues, potentially enabling them to consume complex studies such as multi-parametric magnetic resonance (MR) images, dual energy and perfusion CT images, and 4-D positron emission tomography (PET)/CT images, among others.

For more information: www.siemens.com/healthineers
 

References:

1. DirectDensity reconstruction is designed for use in Radiation Therapy Planning (RTP) only. DirectDensity reconstruction is not intended to be used for diagnostic imaging.

2. As shown by measurements with a Gammex 467 Tissue Characterization Phantom comparing standard reconstruction (kernel D30) and DirectDensity reconstruction (kernel E30). HU value to relative electron density conversion for the standard reconstruction was based on a two-linear-equations approach with individual calibration for each tube voltage. For DirectDensity images, a single tube-voltage-independent linear conversion was used.

Related Content

Accuray Launches Synchrony Motion Tracking and Correction Technology for Radixact System
Technology | Image Guided Radiation Therapy (IGRT) | April 24, 2019
Accuray announced the launch of its Synchrony motion tracking and correction technology to be used with the Radixact...
New Study Redefines Therapeutic Dose Guidelines for Non-Small Cell Lung Cancer
News | Lung Cancer | April 23, 2019
Non-small cell lung cancer is a common cancer for both men and women. Many people who are diagnosed with this type of...
Comparison of state Medicaid fees for radiation oncology services for breast cancer and nonradiation oncology services per the Kaiser Family Foundation Index

Fig. 1: Comparison of state Medicaid fees for radiation oncology services for breast cancer and nonradiation oncology services per the Kaiser Family Foundation Index. (Agarwal et al, Red Journal, 2019) Credit: Elsevier

News | Radiation Therapy | April 22, 2019
April 22, 2019 — A new study finds wide state
Stereotactic Radiosurgery Effective for Pediatric Arteriovenous Malformation Patients
News | Radiation Therapy | April 19, 2019
Ching-Jen Chen, M.D., of the neurosurgery department at the University of Virginia (UVA) Health System, was the winner...
Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
FDA Clears GE's Deep Learning Image Reconstruction Engine
Technology | Computed Tomography (CT) | April 19, 2019
GE Healthcare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) of its Deep Learning Image...
Surgically Guided Brachytherapy Improves Outcomes for Intracranial Neoplasms
News | Brachytherapy Systems | April 18, 2019
Peter Nakaji, M.D., FAANS, general practice neurosurgeon at Barrow Neurological Institute, presented new research on...
ASTRO Applauds Introduction of PIMA Patient Protection Bill
News | Radiology Business | April 15, 2019
The American Society for Radiation Oncology (ASTRO) hailed the introduction of federal legislation that would...
Varian Discloses First Preclinical Results of Flash Therapy in Cancer Treatment
News | Proton Therapy | April 09, 2019
Varian, in partnership with the University of Maryland School of Medicine’s Department of Radiation Oncology and the...
Varian Halcyon Commissioned at MedStar Southern Maryland Hospital Center With IBA's myQA Halo
News | Quality Assurance (QA) | April 04, 2019
IBA (Ion Beam Applications S.A.) announced the successful commissioning of the Varian Halcyon at the Radiation Oncology...