News | Linear Accelerators | January 20, 2021

Dartmouth researchers convert a standard linear accelerator used for delivery of radiation therapy cancer treatment, to deliver an ultra-high-dose rate radiation therapy beam to patients "in a flash"

The exceptionally high dose rate of the FLASH Beam is 3,000 times higher than normal therapy treatment (300 Gray per second vs. 0.1 Gray per second, Gray being a standard unit measuring absorbed radiation). Instead of treatment over 20 seconds, an entire treatment is completed in 6 milliseconds, giving the therapy its nickname, "FLASH." Image courtesy of Brian Pogue, PhD

The exceptionally high dose rate of the FLASH Beam is 3,000 times higher than normal therapy treatment (300 Gray per second vs. 0.1 Gray per second, Gray being a standard unit measuring absorbed radiation). Instead of treatment over 20 seconds, an entire treatment is completed in 6 milliseconds, giving the therapy its nickname, "FLASH." Image courtesy of Brian Pogue, PhD


January 20, 2021 — A joint team of researchers from Radiation Oncology at Dartmouth's and Dartmouth-Hitchcock's Norris Cotton Cancer Center (NCCC), Dartmouth Engineering, and Dartmouth-Hitchcock's Department of Surgery have developed a method to convert a standard linear accelerator (LINAC), used for delivery of radiation therapy cancer treatment, to a FLASH ultra-high-dose rate radiation therapy beam. The work, titled "Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC," is newly published online in the International Journal of Radiation Oncology, Biology & Physics.

The exceptionally high dose rate is 3,000 times higher than normal therapy treatment (300 Gray per second vs. 0.1 Gray per second, Gray being a standard unit measuring absorbed radiation). Instead of treatment over 20 seconds, an entire treatment is completed in 6 milliseconds, giving the therapy its nickname, "FLASH." "These high dose rates have been shown to protect normal tissues from excess damage while still having the same treatment effect on tumor tissues, and may be critically important for limiting radiation damage in patients receiving radiation therapy," said Brian Pogue, Ph.D., Co-Director of NCCC's Translational Engineering in Cancer Research Program and co-author on the project.

While the team awaits news of potential funding from the National Institutes of Health (NIH), early pilot funding from NCCC and Dartmouth's Thayer School of Engineering allowed for prototyping of the converted LINAC. Pre-clinical testing of the beam began in August and has already provided key data on its potential for different tumor plans. "This is the first such beam in New England and on the east coast, and we believe it is the first reversible FLASH beam on a clinically used LINAC where the beam can be used in the conventional geometry with patients on the treatment couch," said Pogue.

The FLASH beam is currently being used in preclinical studies on both experimental animal tumors as well as in clinical veterinary treatments, to study the normal tissue-sparing effects and how to maximize the value. The research group has expanded to involve physicians in clinical radiation oncology and dermatology, designing what they hope will be the first human safety trial with FLASH radiotherapy at Dartmouth-Hitchcock, treating patients advanced skin lesions that cannot be removed surgically.

For more information: https://www.dartmouth-hitchcock.org/


Related Content

News | Radiation Therapy

March 31, 2023 — Varian, a Siemens Healthineers company, shared two key milestones as its users continue to adopt the ...

Time March 31, 2023
arrow
News | Radiation Therapy

March 28, 2023 — People exposed to low doses of ionizing radiation have an extra, but modest, risk of developing heart ...

Time March 28, 2023
arrow
News | Lung Imaging

March 27, 2023 — On Target Laboratories, Inc., a privately held biotechnology company developing intraoperative ...

Time March 27, 2023
arrow
News | PET Imaging

March 23, 2023 — Nuclidium announced that the Neuroendocrine Tumors Research Foundation (NETRF) has selected the company ...

Time March 24, 2023
arrow
News | Lung Imaging

March 22, 2023 — The Riverain Technologies ClearRead Bone Suppression solution is now available on the Siemens ...

Time March 22, 2023
arrow
News | Quality Assurance (QA)

March 16, 2023 — RTsafe, a leading provider of quality assurance products and services in stereotactic radiosurgery ...

Time March 16, 2023
arrow
News | Lung Imaging

March 15, 2023 — According to an accepted manuscript published in ARRS’ own American Journal of Roentgenology (AJR) ...

Time March 15, 2023
arrow
News | Radiation Oncology

March 14, 2023 — Elekta announced that is has signed a joint venture with China National Pharmaceutical Group Co., Ltd. ...

Time March 14, 2023
arrow
News | Digital Pathology

March 13, 2023 — Proscia, a leading provider of digital and computational pathology solutions, today announced that ...

Time March 13, 2023
arrow
Feature | Radiology Business | By Christine Book

With an increasing focus on personalizing the patient experience and enhancing communication between radiologists and ...

Time March 10, 2023
arrow
Subscribe Now