News | Computed Tomography (CT) | June 27, 2016

CT Cancer Risk Poorly Understood by Many Healthcare Providers

Knowledge of radiation dose and associated risks varies among referring physicians, radiologists and technicians, according to new Canadian study

CT scans, radiation dose, cancer risk, healthcare providers survey

June 27, 2016 — A new study in the Journal of Medical Imaging and Radiation Sciences surveyed doctors, radiologists and imaging technologists regarding their beliefs about radiation exposure from computed tomography (CT). The survey found that while most respondents recognized there is an increased risk of cancer from CT, many underestimated the actual radiation dose.

Researchers from the University of Saskatchewan wanted to assess healthcare providers' knowledge regarding radiation dosing from CT scans. Using a survey of medical professionals in Saskatchewan, investigators found that 73 percent of physicians, 97 percent of radiologists and 76 percent of technologists correctly identified that there is an increased cancer risk from one abdominal-pelvic CT. However, only 18 percent of physicians, 28 percent of radiologists and 22 percent of technologists were able to correctly identify the dose in relation to chest X-rays. Although 48 percent of physicians, 78 percent of radiologists and 63 percent of technologists either accurately estimated or overestimated this dose, many respondents underestimated the dose level.

"Underestimating radiation dose from a CT scan is more concerning than knowing the exact dose level, particularly when it is a vast underestimation, as this may lead to minimization of the risk estimate when considering a test," explained lead investigator David Leswick, M.D., FRCPC, Department of Medical Imaging, College of Medicine, University of Saskatchewan.

The issue of radiation exposure is significant as doctors continue to order CT scans with increasing frequency. In Canada alone, there were an estimated 4.4 million CT scans conducted in 2011-2012. Measured in millisieverts (mSv), the average radiation dose from an abdominal-pelvic CT is 10 mSv, compared to 0.02 to 0.2 mSv from one chest X-ray, meaning that a radiation dose from a CT scan is best approximated as between that from 100-250 chest radiographs.

"Although risk from radiation dose levels in the range of medical imaging procedures is small, it is real as evidenced from atomic bomb survivors and nuclear industry workers showing significantly increased risk of malignancy after exposure to doses in the range of diagnostic CT," said Leswick. "The risk of fatal malignancy may be as high as 1 in 1000 for a 10-mSv exposure (approximate dose of an abdomen-pelvis CT). This risk is significant on a population basis, with up to 2 percent of cancers in the United States population possibly attributable to CT.”

With such a clear risk relationship between radiation exposure and cancer, it is imperative that healthcare providers understand the facts to ensure the benefits outweigh the possible danger when ordering a diagnostic CT. The survey indicated that 93 percent of respondents were interested in radiation dose feedback when considering ordering a CT scan. Automated dose calculation software and radiology information systems can be integrated into electronic ordering, which would give doctors immediate access to information when considering ordering a scan.

Another interesting aspect highlighted by the survey was some confusion regarding radiation exposure from magnetic resonance imaging (MRI) and ultrasound. MRIs and ultrasounds do not employ ionizing radiation and yet 20 percent of physicians, 6 percent of radiologists and 7 percent of technologists attributed radiation exposure to MRIs, and 11 percent of physicians, 0 percent of radiologists and 7 percent of technologists believed an ultrasound used radiation. "Belief that ionizing radiation is utilized by ultrasound and MRI is troubling as it may result in underutilization of these imaging modalities because of unfounded radiation concerns," added Leswick.

While CT scans can be a lifesaving diagnostic tool, they also present a potential danger if they are overused or incorrectly implemented. It is vital that doctors and other healthcare practitioners fully understand the implications of ordering a CT scan and that patients are counseled appropriately about all available forms of testing and the potential radiation exposure involved.

"Unfortunately, healthcare providers including physicians, radiologists and medical imaging technologists are often not aware of radiation doses for common CT scans," concluded Leswick. "It is important for healthcare professionals (including referring physicians, radiologists and technologists) to be aware of radiation dose levels and risks from imaging tests for several reasons, including the ability to weigh the risks and benefits of tests, counsel patients on relevant risks, optimize protocols to minimize radiation dose, and select appropriate protocols to minimize radiation dose.”

For more information: www.jmirs.org

Related Content

New Lung Ambition Alliance Aims to Double Five-year Lung Cancer Survival by 2025
News | Lung Cancer | July 17, 2019
The International Association for the Study of Lung Cancer (IASLC), Guardant Health, the Global Lung Cancer Coalition (...
Mirion Showcases Instadose2 Wireless Dual Detector Dosimeter at AAPM and AHRA
News | Radiation Dose Management | July 15, 2019
Featuring dual detectors, the Instadose2 dosimeter addresses international requirements for independent deep [Hp(10)]...
Example of an intentionally truncated CT image

Figure 1: Example of an intentionally truncated CT image. The truncation percentage was calculated as the ratio of the patient border touching the field of view to the total patient border (red/(read+blue)). Image courtesy of Qaelum.

Feature | Radiation Dose Management | July 15, 2019 | Niki Fitousi, Ph.D., and An Dedulle
One of the main benefits of a radiation dose management system is the possibility to automatically generate alerts when...
Routine scan of abdomen pelvis taken with the UW-Madison’s Revolution 256 CT scanner using the FDA-cleared reconstruction algorithm, called TrueFidelity.

Routine scan of abdomen pelvis taken with the UW-Madison’s Revolution 256 CT scanner using the FDA-cleared reconstruction algorithm, called TrueFidelity. UW-Madison was the first site in the U.S. to get this technology. Its use is now being integrated into UW CT protocols. Image courtesy of Timothy P. Szczykutowicz

Feature | Computed Tomography (CT) | July 12, 2019 | By Greg Freiherr
When providers develop their own imaging protocols, they are wasting time and money, according to...
Fluke Biomedical Introduces RaySafe 452 Survey Meter
Technology | Radiation Dose Management | July 11, 2019
Radiation measurement often requires different devices for varying applications, adding to the cost and complexity of...
Mednax National Cardiac Centers of Excellence Program Highlighted at SCCT 2019
News | CT Angiography (CTA) | July 11, 2019
Mednax Inc. and Mednax Radiology Solutions announced that Chief Medical Officer Ricardo C. Cury, M.D., FSCCT, will...
Achenbach to Receive Inaugural 2019 Stephan Achenbach Pioneer Award in Cardiovascular CT
News | Cardiac Imaging | July 10, 2019
The Society of Cardiovascular Computed Tomography (SCCT) will present Stephan Achenbach, M.D., FSCCT with the inaugural...
Researchers Use Artificial Intelligence to Deliver Personalized Radiation Therapy
News | Radiation Therapy | July 09, 2019
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to...
Radcal Exhibits Accu-Gold Touch Systems at AAPM 2019
News | Radiation Dose Management | July 09, 2019
Radcal Corp. will be presenting the new Accu-Gold Touch platform, a multi-analyzer the company says is the latest in X-...