News | June 17, 2013

Crystal Clear: Real-time 3D Motion Tracking Optimizes PET/MR Scans

Magnetic resonance-based wearable technology accounts for patient movement for clearer data reconstruction and fewer imaging artifacts

One of the biggest hurdles of hybrid positron emission tomography and magnetic resonance (PET/MR) imaging is the prevalence of motion artifacts—blurring and ghostly visual anomalies caused by patient motion on the table during imaging. An MR technology has now been designed for PET/MR that employs tiny radiofrequency solenoids—metal coils integrated into hardware placed on the body—to track motion from those who do not or cannot stay put. Special software can then use the additional information provided by the coils to optimize the image, according to research being revealed at SNMMI’s 2013 Annual Meeting.

One of the most important applications of this technology is in brain imaging for patients with dementia, who often have movement disorders such as those in Parkinson’s. For these patient populations, this technology improves already exceptional diagnostic imaging and creates better potential for therapy monitoring in the future. 

“Dementia is one of the biggest health problems facing human society now and in the future. PET is a powerful tool in early detection and treatment of dementia, including Alzheimer’s disease. Early diagnosis of dementia can have a tremendous impact on treatment for patients and their family members,” said Chuan Huang, Ph.D., lead researcher for the study, from Massachusetts General Hospital in Boston, Mass. “Simultaneous PET/MR allows measurement of anatomy, functionality, and biochemistry of tissues and cells. Combined with our low-cost MR micro-coil–based motion correction, PET/MR provides essential information about the brain and other parts of the body with greater accuracy, even for long studies or research involving motion, which opens the door to more expansive multi-modality studies.”

During brain scans in particular, patient head motion without corrective technology can lead to imaging failures due to extensive blurring in reconstructed PET data. Even patients who are restrained are likely to move position during scans that can take an hour or more, and just a few millimeters or degrees off can cause artifacts.

“PET imaging is similar to taking a photo inside the body using specialized imaging data,” said Huang. “Just like with a normal camera, when you take a picture in an extremely lowlight environment you need long exposure times to get a good quality picture. If the object is moving, the image blurs. Our research is essentially providing an image stabilizer for PET/MR scanners, which can then generate crisp and clear images even though the object is moving. Our approach is similar to capturing each of the light rays coming from the moving object and configuring it back to its original position.”

The micro-coils are smaller than a dime and just millimeters in diameter. Before scanning they are fixed on an apparatus placed on the patient’s body, providing real-time and 3D fields of motion during imaging that are incorporated during image reconstruction. Other motion tracking techniques already in clinical use include “gating” technologies that involve the equivalent of freezing a motion picture and arranging film stills in a pattern that omits motion, then splicing them back together; but this means effectively throwing away meaningful information between data splices, which degrades scan quality.

Researchers conducted the study by using phantoms, or mock humans, and motion was simulated using a ventilator system. The MR micro-coil apparatus was positioned on the phantom, and motion tracking was acquired simultaneously during PET/MR scanning. Results of the study showed that 3D motion-tracked PET imaging using MR micro-coils dramatically reduced movement-related imaging artifacts. Now that this PET/MR technology has been proven beneficial, further research will be needed with actual patients before it can be expanded into general imaging practice.

In addition, the researchers are developing wireless micro-coils for use with PET/MR. “The wireless micro-coils are, compared to the wired coils, more patient friendly, easier to set up and cheaper to manufacture,” added Jinsong Ouyang, Ph.D., senior researcher for the study, also from Massachusetts General Hospital in Boston, Mass. “The advantages should smooth adoption of motion-tracking micro-coils in clinical practice.”

Scientific Paper 44: Chuan Huang, Yoann Petibon, Thomas Brady, Georges El Fakhri, Jinsong Ouyang, Center for Advanced Medical Imaging Sciences, NMMI, Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Jerome Ackerman, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, “Real-time 3D motion tracking using MR micro-coils for PET imaging,” SNMMI’s 60th Annual Meeting, June 8–12, 2013, Vancouver, British Columbia.

For more information: www.snmmi.org

Related Content

NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Siemens Healthineers Announces First U.S. Install of Biograph Vision PET/CT
News | PET-CT | March 06, 2019
Siemens Healthineers’ new Biograph Vision positron emission tomography/computed tomography (PET/CT) system has been...
Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
February 13, 2019 — At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and e
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
FDA Clears United Imaging Healthcare uExplorer Total-Body Scanner
Technology | PET-CT | January 23, 2019
January 23, 2019 — United Imaging Healthcare (United Imaging) announced U.S.
MIM Software Inc. Receives FDA 510(k) Clearance for Molecular Radiotherapy Dosimetry
Technology | Nuclear Imaging | January 16, 2019
MIM Software Inc. received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for molecular radiotherapy...