News | June 17, 2013

Crystal Clear: Real-time 3D Motion Tracking Optimizes PET/MR Scans

Magnetic resonance-based wearable technology accounts for patient movement for clearer data reconstruction and fewer imaging artifacts

One of the biggest hurdles of hybrid positron emission tomography and magnetic resonance (PET/MR) imaging is the prevalence of motion artifacts—blurring and ghostly visual anomalies caused by patient motion on the table during imaging. An MR technology has now been designed for PET/MR that employs tiny radiofrequency solenoids—metal coils integrated into hardware placed on the body—to track motion from those who do not or cannot stay put. Special software can then use the additional information provided by the coils to optimize the image, according to research being revealed at SNMMI’s 2013 Annual Meeting.

One of the most important applications of this technology is in brain imaging for patients with dementia, who often have movement disorders such as those in Parkinson’s. For these patient populations, this technology improves already exceptional diagnostic imaging and creates better potential for therapy monitoring in the future. 

“Dementia is one of the biggest health problems facing human society now and in the future. PET is a powerful tool in early detection and treatment of dementia, including Alzheimer’s disease. Early diagnosis of dementia can have a tremendous impact on treatment for patients and their family members,” said Chuan Huang, Ph.D., lead researcher for the study, from Massachusetts General Hospital in Boston, Mass. “Simultaneous PET/MR allows measurement of anatomy, functionality, and biochemistry of tissues and cells. Combined with our low-cost MR micro-coil–based motion correction, PET/MR provides essential information about the brain and other parts of the body with greater accuracy, even for long studies or research involving motion, which opens the door to more expansive multi-modality studies.”

During brain scans in particular, patient head motion without corrective technology can lead to imaging failures due to extensive blurring in reconstructed PET data. Even patients who are restrained are likely to move position during scans that can take an hour or more, and just a few millimeters or degrees off can cause artifacts.

“PET imaging is similar to taking a photo inside the body using specialized imaging data,” said Huang. “Just like with a normal camera, when you take a picture in an extremely lowlight environment you need long exposure times to get a good quality picture. If the object is moving, the image blurs. Our research is essentially providing an image stabilizer for PET/MR scanners, which can then generate crisp and clear images even though the object is moving. Our approach is similar to capturing each of the light rays coming from the moving object and configuring it back to its original position.”

The micro-coils are smaller than a dime and just millimeters in diameter. Before scanning they are fixed on an apparatus placed on the patient’s body, providing real-time and 3D fields of motion during imaging that are incorporated during image reconstruction. Other motion tracking techniques already in clinical use include “gating” technologies that involve the equivalent of freezing a motion picture and arranging film stills in a pattern that omits motion, then splicing them back together; but this means effectively throwing away meaningful information between data splices, which degrades scan quality.

Researchers conducted the study by using phantoms, or mock humans, and motion was simulated using a ventilator system. The MR micro-coil apparatus was positioned on the phantom, and motion tracking was acquired simultaneously during PET/MR scanning. Results of the study showed that 3D motion-tracked PET imaging using MR micro-coils dramatically reduced movement-related imaging artifacts. Now that this PET/MR technology has been proven beneficial, further research will be needed with actual patients before it can be expanded into general imaging practice.

In addition, the researchers are developing wireless micro-coils for use with PET/MR. “The wireless micro-coils are, compared to the wired coils, more patient friendly, easier to set up and cheaper to manufacture,” added Jinsong Ouyang, Ph.D., senior researcher for the study, also from Massachusetts General Hospital in Boston, Mass. “The advantages should smooth adoption of motion-tracking micro-coils in clinical practice.”

Scientific Paper 44: Chuan Huang, Yoann Petibon, Thomas Brady, Georges El Fakhri, Jinsong Ouyang, Center for Advanced Medical Imaging Sciences, NMMI, Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Jerome Ackerman, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, “Real-time 3D motion tracking using MR micro-coils for PET imaging,” SNMMI’s 60th Annual Meeting, June 8–12, 2013, Vancouver, British Columbia.

For more information: www.snmmi.org

Related Content

PET/CT Changes Care for 59 Percent of Suspected Recurrent Prostate Cancer Cases
News | Prostate Cancer | June 13, 2018
A recently presented investigational clinical trial evaluated the impact of 18F fluciclovine positron emission...
Nuclear imaging scan showing very good tissue delineation. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Nuclear imaging scan showing very good tissue delineation. It offers crisp overall image quality and sharply delineates the muscle and fat planes, vertebral margins and end plates, billiary radicals, renal calyces, aortic wall and papillary muscles of the heart. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Technology | PET-CT | June 05, 2018
June 5, 2018 — The U.S.
Emerging Trends in Nuclear Medicine
Feature | Nuclear Imaging | June 04, 2018 | By Jeff Zagoudis
Nuclear imaging and its various modalities have long played an important role in the diagnosis and treatment of numer
PET Imaging Agent Could Provide Early Diagnosis of Rheumatoid Arthritis

Coronal 18F-FEDAC PET/CT section of a mouse with collagen-induced arthritis. (A) On day 23 and day 37, increased uptake is noted in the front and hind paws of this mouse with collagen-induced arthritis. (B) Predictive performance of day 23 18F-FEDAC uptake for the development of clinical arthritis. ROC = receiver operating characteristic; Sn = sensitivity; Sp = specificity. Credit: Seoul National University and Ewha Womans University, Seoul, South Korea

News | PET Imaging | May 17, 2018
A novel positron emission tomography (PET) tracer developed by Korean researchers can visualize joint inflammation and...
PET Imaging Shows Protein Clumping May Contribute to Heart Failure Development
News | PET Imaging | May 11, 2018
A team led by Johns Hopkins University Researchers has discovered that protein clumps appear to accumulate in the...
News | Radiopharmaceuticals and Tracers | May 09, 2018
Blue Earth Diagnostics signed an exclusive, worldwide agreement with Scintomics GmbH, Germany, a specialist in...
Novel PET Agent Could Help Guide Therapy for Brain Diseases

Rat brain 11C‐Me‐NB1 PET images (0‐60 min) superimposed on an MRI template. Credit: SD Krämer et al., ETH Zurich, Zurich, Switzerland

News | PET Imaging | April 10, 2018
Researchers have developed a new imaging agent that could help guide and assess treatments for people with various...
The Chalk River nuclear reactor license has been renewed, but will be decommissioned by 2028.

The Chalk River nuclear isotope reactor license has been renewed, but will be decommissioned by 2028. The reactor supplies about 50 percent of the world's supply of Tc99m.

Feature | Nuclear Imaging | April 02, 2018 | Dave Fornell
April 2, 2018 – The Canadian Nuclear Safety Commission (CNSC) announced March 29 that it renewed Canadian Nuclear Lab
The yellow in the anterolateral entorhinal cortex of the young brain indicates significant activity, something that is absent in the older brain.

This figure shows two different brains that are aligned to a common template space for comparison. The yellow in the anterolateral entorhinal cortex of the young brain indicates significant activity, something that is absent in the older brain. CREDIT: Zachariah Reagh

News | Nuclear Imaging | March 08, 2018
As we get older, it's not uncommon to experience "senior moments," in which we forget where we parked our car or call...
Overlay Init