News | July 29, 2009

Congress Introduces Bill to Ensure Continuous Domestic Supplies of Medical Isotopes

July 29, 2009 – The Society of Nuclear Medicine (SNM) and a coalition of eight other organizations have issued a white paper urging Congress to take steps to maintain adequate supplies of molybdenum-99 (Mo-99), a radioactive substance that is the basis for a common medical isotope used in more than 80 percent of all nuclear medicine procedures.

The coalition jointly issued the paper to ensure that patient care is not compromised by a worldwide shortage of Mo-99 and measures to curtail the use of high-enriched uranium (HEU) in radionuclide production as a non-proliferation strategy. In response, U.S. Rep. Edward Markey (D-Mass.) introduced legislation (H.R. 3276) reflecting many of the coalition's concerns. The coalition has endorsed the legislation.

In addition to SNM, the coalition includes the American Association of Physicists in Medicine (AAPM), American College of Radiology (ACR), American Nuclear Society (ANS), American Society of Nuclear Cardiology (ASNC), American Society for Radiation Oncology (ASTRO), Council on Radionuclides and Radiopharmaceuticals (CORAR), Health Physics Society (HPS) and Nuclear Energy Institute (NEI).

"Recent closures of nuclear facilities abroad are putting a severe strain on our ability to meet demand for this critical medical isotope," said Michael Graham, M.D., Ph.D., president of SNM. "Congress should take steps to boost production domestically and to ensure that the transition away from using highly enriched uranium in medical isotope production does not further strain supplies. We applaud Congress for taking up this issue and urge the government to act without delay."

Mo-99 decays into technetium-99m (Tc-99m) – a medical isotope used in approximately 16 million nuclear diagnostic imaging procedures annually in the United States. These noninvasive procedures are essential for accurately diagnosing and treating patients with potentially life-threatening conditions such as cancer, heart disease and neurologic conditions.

Currently, more than 90 percent of Mo-99 is produced in aging nuclear reactors located in Canada, the Netherlands, Belgium, France and South Africa. Concerns about medical isotope supplies have mounted in recent years as scheduled and unplanned shutdowns of overseas reactors have interrupted production. Most recently, the National Research Universal reactor in Ontario, Canada, which supplies about 40 percent of the world's Mo-99, was shut down until later this year because of a heavy water leak following a power outage.

Further complicating the situation are recent recommendations to curtail the use of HEU in radionuclide production because of potential security concerns. However, the conversion to the alternative low-enriched uranium (LEU) to produce medical isotopes is still years away. Before such a transition can take place, large-scale commercial facilities must be planned, converted and demonstrate efficacy.

To address these concerns, the coalition's white paper recommends that the government explore a public-private partnership to speed the availability of Mo-99 and ensure continued diagnostic imaging for patients. It is imperative that domestic sources of Mo-99 be developed to guarantee a reliable supply.

The paper identifies two potential domestic sources of Mo-99 as the most viable: the University of Missouri Research Reactor Center (MURR) in Columbia, Mo., and the collaborative effort between the companies Babcock & Wilcox (B&W) and Covidien to build a reactor running strictly on LEU. MURR could meet approximately 50 percent of the U.S. demand for Mo-99 with little change, the paper notes, and it could also help fill gaps in supplies during planned shutdowns of other reactors. B&W and Covidien estimate that a new reactor technology could be operational in about five years and supply half of the U.S. demand for Mo-99. Together, these two sources could eventually meet 100 percent of the U.S. demand for Mo-99. The coalition urges the government to speed approvals for these facilities and support the Markey bill, which provides federal funding for the projects.

The organizations stress that any requirement to transition from HEU to LEU in the production of medical isotopes must ensure that supplies of Mo-99 are sufficient and that patient needs are not compromised. Adequate time must be available for research and development to guarantee that the technology and equipment are robust and reliable.

For more information: visit www.snm.org
?

Related Content

ASNC and SNMMI Release Joint Document on Diagnosis, Treatment of Cardiac Sarcoidosis
News | Cardiac Imaging | August 18, 2017
August 18, 2017 — The American Society of Nuclear Cardiology (ASNC) has released a joint expert consensus document wi
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

News | PET-CT | July 14, 2017
July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET)...
Novel PET Tracer Detects Small Blood Clots

PET images (MIP 0-60 min) of three Cynomolgus monkeys. Strong signals are detected at the sites where inserted catheters had roughened surfaces. Almost no other background signal is visible. Only accumulation in the gallbladder becomes visible at the bottom of the image. Credit: Piramal Imaging GmbH, Berlin Germany.

News | PET Imaging | July 07, 2017
July 7, 2017 — Blood clots in veins a
Sponsored Content | Videos | Clinical Decision Support | June 29, 2017
Rami Doukky, M.D., system chair, Division of Cardiology, professor of medicine, Cook County Health and Hospitals Syst
Dual-Agent PET/MR With Time of Flight Detects More Cancer

Tc-99m MDP bone scan (left) is negative for osseous lesions. NaF/FDG PET/MRI (right and second slide) confirms absence of bone metastases, but shows liver metastases. Image courtesy of Stanford University.

News | PET-MRI | June 20, 2017
Simultaneous injections of the radiopharmaceuticals fluorine-18 fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (...
Combined Optical and Molecular Imaging Could Guide Breast-Conserving Surgery

WLE specimen from a patient with a grade 3, ER-/HER2-, no special type (NST) carcinoma. (A) Cerenkov image; (B) Grey-scale photographic image overlaid with Cerenkov signal. An increased signal from the tumor is visible (white arrows); mean radiance is 871 ± 131 photons/s/cm2/sr, mean TBR is 3.22. Both surgeons measured the posterior margin (outlined in blue) as 2 mm (small arrow); a cavity shaving would have been performed if the image had been available intraoperatively. The medial margin (outlined in green) measured >5 mm by both surgeons. Pathology ink prevented assessing the lateral margin; a phosphorescent signal is visible (open arrows). (C) Specimen radiography image. The absence of one surgical clip to mark the anterior margin, and the odd position of the superior margin clip (white arrow) prevented reliable margin assessment. (D) Combined histopathology image from two adjacent pathology slides on which the posterior margin (bottom of image) and part of the primary tumor are visible (open arrows). The distance from the posterior margin measured 3 mm microscopically (double arrow). The medial margin is > 5 mm (not present in image). Credit: A. D. Purushotham, M.D., King’s College London, UK

News | Nuclear Imaging | June 20, 2017
June 20, 2017 — Breast-conserving surgery (BCS) is the primary treatment for early-stage...
Overlay Init