News | July 29, 2009

Congress Introduces Bill to Ensure Continuous Domestic Supplies of Medical Isotopes

July 29, 2009 – The Society of Nuclear Medicine (SNM) and a coalition of eight other organizations have issued a white paper urging Congress to take steps to maintain adequate supplies of molybdenum-99 (Mo-99), a radioactive substance that is the basis for a common medical isotope used in more than 80 percent of all nuclear medicine procedures.

The coalition jointly issued the paper to ensure that patient care is not compromised by a worldwide shortage of Mo-99 and measures to curtail the use of high-enriched uranium (HEU) in radionuclide production as a non-proliferation strategy. In response, U.S. Rep. Edward Markey (D-Mass.) introduced legislation (H.R. 3276) reflecting many of the coalition's concerns. The coalition has endorsed the legislation.

In addition to SNM, the coalition includes the American Association of Physicists in Medicine (AAPM), American College of Radiology (ACR), American Nuclear Society (ANS), American Society of Nuclear Cardiology (ASNC), American Society for Radiation Oncology (ASTRO), Council on Radionuclides and Radiopharmaceuticals (CORAR), Health Physics Society (HPS) and Nuclear Energy Institute (NEI).

"Recent closures of nuclear facilities abroad are putting a severe strain on our ability to meet demand for this critical medical isotope," said Michael Graham, M.D., Ph.D., president of SNM. "Congress should take steps to boost production domestically and to ensure that the transition away from using highly enriched uranium in medical isotope production does not further strain supplies. We applaud Congress for taking up this issue and urge the government to act without delay."

Mo-99 decays into technetium-99m (Tc-99m) – a medical isotope used in approximately 16 million nuclear diagnostic imaging procedures annually in the United States. These noninvasive procedures are essential for accurately diagnosing and treating patients with potentially life-threatening conditions such as cancer, heart disease and neurologic conditions.

Currently, more than 90 percent of Mo-99 is produced in aging nuclear reactors located in Canada, the Netherlands, Belgium, France and South Africa. Concerns about medical isotope supplies have mounted in recent years as scheduled and unplanned shutdowns of overseas reactors have interrupted production. Most recently, the National Research Universal reactor in Ontario, Canada, which supplies about 40 percent of the world's Mo-99, was shut down until later this year because of a heavy water leak following a power outage.

Further complicating the situation are recent recommendations to curtail the use of HEU in radionuclide production because of potential security concerns. However, the conversion to the alternative low-enriched uranium (LEU) to produce medical isotopes is still years away. Before such a transition can take place, large-scale commercial facilities must be planned, converted and demonstrate efficacy.

To address these concerns, the coalition's white paper recommends that the government explore a public-private partnership to speed the availability of Mo-99 and ensure continued diagnostic imaging for patients. It is imperative that domestic sources of Mo-99 be developed to guarantee a reliable supply.

The paper identifies two potential domestic sources of Mo-99 as the most viable: the University of Missouri Research Reactor Center (MURR) in Columbia, Mo., and the collaborative effort between the companies Babcock & Wilcox (B&W) and Covidien to build a reactor running strictly on LEU. MURR could meet approximately 50 percent of the U.S. demand for Mo-99 with little change, the paper notes, and it could also help fill gaps in supplies during planned shutdowns of other reactors. B&W and Covidien estimate that a new reactor technology could be operational in about five years and supply half of the U.S. demand for Mo-99. Together, these two sources could eventually meet 100 percent of the U.S. demand for Mo-99. The coalition urges the government to speed approvals for these facilities and support the Markey bill, which provides federal funding for the projects.

The organizations stress that any requirement to transition from HEU to LEU in the production of medical isotopes must ensure that supplies of Mo-99 are sufficient and that patient needs are not compromised. Adequate time must be available for research and development to guarantee that the technology and equipment are robust and reliable.

For more information: visit www.snm.org
?

Related Content

New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Blue Earth Diagnostics Expands Access to Axumin in Europe
News | Radiopharmaceuticals and Tracers | May 13, 2019
Blue Earth Diagnostics announced expanded access to the Axumin (fluciclovine (18F)) imaging agent in Europe. The first...
Shine Medical Technologies Breaks Ground on U.S. Medical Isotope Production Facility

Image courtesy of Amen Clinics

News | Radiopharmaceuticals and Tracers | May 10, 2019 | Jeff Zagoudis, Associate Editor
Shine Medical Technologies Inc. broke ground on their first medical isotope production facility in Janesville, Wis. U.S...
A 3-D printed tungsten X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | April 29, 2019 | By Steve Jeffery
In ...
NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Siemens Healthineers Announces First U.S. Install of Biograph Vision PET/CT
News | PET-CT | March 06, 2019
Siemens Healthineers’ new Biograph Vision positron emission tomography/computed tomography (PET/CT) system has been...