News | March 03, 2015

Computer Simulator Will Improve Radiation Therapy for Cancer Patients

Application by University of Arkansas graduate student lets users design, test dual-scattering foil systems in 100 milliseconds

March 3, 2015 — Using complex computational algorithms based on repeated sampling, a University of Arkansas graduate student helped spearhead a project to develop a computer simulator that provides customized electron beam tunings for radiation therapy. The research will help cancer centers provide better radiation therapy.

Justin LeBlanc, a Distinguished Doctoral Fellow and doctoral candidate in economics in the Sam M. Walton College of Business, and colleagues developed and verified the simulator and a design process as part of his master’s thesis in physics at Louisiana State University. The study has been published in the Journal of Applied Clinical Medical Physics.

In radiation therapy, linear accelerators deliver highly focused beams of electrons to destroy cancerous cells. The accelerator produces a small, intensely concentrated beam of electrons called a pencil beam. For this to be useful clinically it must be broadened to cover the patient’s tumor. Dual-scattering systems are designed for this purpose. They help ensure the electrons deposit their energy into the patient’s cancerous tissue while sparing surrounding, healthy tissue.

The current approach for designing dual-scattering systems is a conventional, one-size-fits-all standard, because their design proposes a nearly infinite number of solutions for achieving any one facility’s desired specifications.

“Until now, the design process had never been done analytically,” LeBlanc said.

The simulator facilitates better design of dual-scattering foil systems. When the geometry of such a system is specified, the simulator allows the user to vary primary and secondary scattering foil material and thickness and to see results in approximately 100 milliseconds — about 10 million times faster than Monte Carlo simulations, which are simulations and computational algorithms that rely on random sampling to obtain results for extremely complex problems that have only numerical solutions.

The rapid design capability allows an initial optimization to be obtained, which can then be refined and verified with subsequent Monte Carlo calculations and measurements. This process can be used to facilitate a better design of dual-scattering foil systems for improved patient treatment.

“The user-friendly interface and real-time nature of the simulator also make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on dose profiles,” LeBlanc said. “In other words, it will help medical physicists and linear accelerator designers to better understand the physics behind the equipment with which they will be working.”

For more information: www.uark.edu

Related Content

Xstrahl Photoelectric Therapy System Receives FDA 510(k) Clearance
Technology | Radiation Therapy | October 20, 2017
Xstrahl announced that its Photoelectric Therapy System has received U.S. Food and Drug Administration (FDA) 510(k)...
Cleveland Clinic Researchers Reveal Biomarker for Guiding Prostate Cancer Treatment
News | Prostate Cancer | October 17, 2017
October 17, 2017 — Back-to-back discoveries from Cleveland Clinic demonstrate for the first time how a testosterone-r
IBA Announces First Use of Gating With Active Scanning Proton Therapy in Italy
News | Proton Therapy | October 17, 2017
October 17, 2017 — The Trento Azienda Provinciale per i Servizi Sanitari (APSS) and IBA announced the successful comp
Elekta and Brainlab Offer Streamlined Workflow for Stereotactic Radiotherapy
News | Radiation Therapy | October 16, 2017
Elekta and Brainlab have reconfirmed their alliance for the integrated use of the Elekta Versa HD linear accelerator...
Pancreatic Cancer Outcome Highlights via On-table Adaptive MR-guided Radiation Therapy, MRI guided RT.
Sponsored Content | Webinar | Radiation Therapy | October 13, 2017
The webinar "Pancreatic Cancer Outcome Highlights via On-table Adaptive MR-guided Radiation" will be presented by Par
National Breast Center Founder Names Top Three Innovations in Breast Cancer Treatment
News | Women's Health | October 11, 2017
In 2017, invasive breast cancer will be diagnosed in about 252,710 women and 2,470 men in the U.S. and remains the...
CyberKnife System Provides Excellent Long-Term Control of Low-Risk Prostate Cancer
News | Stereotactic Body Radiation Therapy (SBRT) | October 10, 2017
Accuray Inc. announced that data from a prospective study of 230 men with low-risk prostate cancer showed 98.4 percent...
News | Image Guided Radiation Therapy (IGRT) | October 10, 2017
Elekta announced that members of the Elekta MR-linac Consortium reported data related to the advancement of the company...
Sponsored Content | Videos | Radiation Therapy | October 09, 2017
David Beyer, M.D., chairman of the board for the American Society of Radiation Oncology (ASTRO), discusses the key th
Sponsored Content | Videos | Radiation Therapy | October 09, 2017
Benjamin Movsas, M.D., chair of the American Society for Radiation Oncology (ASTRO) Scientific Committee, explains ho
Overlay Init