News | X-Ray | December 03, 2020

Cold Cathode X-ray Technology Demonstrated at RSNA 2020

Nanox offered live range of 2-D and 3-D imaging demos with its Nanox ARC Prototype imaging system at RSNA 2020

The Nanox.ARC next-generation cold cathode X-ray prototype at the 2020 Radiology Society of North America (RSNA) virtual meeting. The live demonstration featured a range of 2-D and 3-D imaging procedures using its groundbreaking digital X-ray tube in a unique multi-source array structure. #RSNA20 #RSNA2020

The Nanox.ARC next-generation cold cathode X-ray prototype at the 2020 Radiology Society of North America (RSNA) virtual meeting. The live demonstration featured a range of 2-D and 3-D imaging procedures using its groundbreaking digital X-ray tube in a unique multi-source array structure.

December 3, 2020 — Nanox said today it successfully demonstrated its Nanox.ARC next-generation cold cathode X-ray prototype at the 2020 Radiology Society of North America (RSNA) virtual meeting. The live demonstration featured a range of 2-D and 3-D imaging procedures using its groundbreaking digital X-ray tube in a unique multi-source array structure.

Modern X-ray equipment is said to have been digitalized. However, this change ‎has only affected the image capturing, processing and data storage section - not ‎the actual X-ray tube itself. At the heart of every new X-ray tube, there still is a ‎metal filament that has gone virtually unchanged for the past 100 years.

Nanox Cold cathode X-ray tube chipNanox has developed a silicon chip which operates as a field-emission-type cathode, or "cold cathode." A cold cathode extracts electrons from metal by applying an external electric field rather that large amounts of heat to create a an electron beam. Using proprietary micro-electrical-mechanical-systems (MEMS) techniques, the Nanox chip contains millions of nanoscale gates in a single chip, about one square centimeter in size. A very high electric field is induced at the nanoscale gap between the cone emitters and the hole right above them (called the "gate hole"). The high electric field is highly effective at extracting electrons from the cone emitters. These electrons make up the electron beam between the cathode and the anode.

“We are pleased to have now demonstrated a working prototype of our next generation digital X-ray technology, the Nanox.ARC, in a range of medical imaging procedures that produced unique clinical value. We believe the Nanox.ARC has the potential to significantly expand the market by providing access to the roughly two-thirds of the world’s population who currently do not have access to medical imaging. If successful, we believe this can revolutionize preventive healthcare through early detection of serious and costly medical conditions," explained Ran Poliakine, chairman and CEO of Nanox. "To date, we have signed agreements for the deployment of more than 5,100 Nanox.ARC units through our service providers in numerous countries, and, pending local regulatory approvals and customer acceptance, we believe we can begin deployments as early as mid-year 2021.”

Development of Cold-cathode X-ray Tube Technology

Field Emission Technologies, a Sony spin-off company, developed ‎the technical know-how to produce the world's first high-quality FED (Field Emission Display) panel. ‎While the cold cathode ‎principle was not new to scientific researchers, they battled to obtain ample ‎and stable ‎electrons in a non-heat driven emission platform.‎ Nanox had acquired this technology and ported it to the medical imaging field.

In the medical imaging sector, using a field-emission-type X-ray tube has several desirable properties:‎‎

1.‎ ‎Rapid time switching: In a hot cathode, the acceleration of the electrons towards the Anode ‎‎‎(thereby creating X-rays) is done by activating and switching a high voltage supply. This process ‎‎takes time (on the order of milliseconds). ‎In a cold cathode, one can set the high voltage and ‎switch only the gate voltages – a process ‎that can take only microseconds.‎

2.‎ ‎Rapid intensity change: The Field Emitter current depends on the applied voltage, and the X-‎ray intensity depends ‎on ‎the Field Emitter current. With cold ‎cathode technology, it is possible ‎to uncouple these ‎two ‎parameters, i.e., the current's power is independent of ‎the voltage. ‎‎Thus, the X-ray intensity ‎can be rapidly controlled by increasing the speed ‎of switching or by ‎creating ‎short pulses.‎‎

3.‎ Colder Mechanism: Electrons are extracted from the metal cathode by an applied electric ‎field‎, while the emitter ‎temperature ‎is significantly lower than that of Hot ‎Cathode (thermionic ‎‎emission) filaments. Hot cathode temperature is ‎over 2000 degrees Celsius while a Cold ‎‎Cathode‎ temperature is that of ‎room temperature‎.‎

4.‎ Lifetime improvement: A colder cathode has the benefits of a longer lifetime. The ‎hot ‎cathode's longevity is ‎of thousands of patients' lifetime, ‎whereas that of the Cold Cathode‎ ‎is more than 1 million patients' lifetime.‎

Up until now, Cold Cathodes, including CNT (or Carbon Nano Tube) and standard Spindt cathodes, failed to achieve the ‎quality level, efficiency, and the lifetime required for commercial products.‎

Over nine years of development by a Japanese and Israeli engineering team, produced a ‎stable cold-cathode field emission MEMS silicon‎.

The company hopes to create an inexpensive, low-energy consumption, lightweight, non-heat generating X-ray system that will be easily used by clinics, especially in developing countries.

Nanox cold cathode X-ray comparison with standard X-ray tube images

For more information: www.nanox.vision

Find more RSNA news and video

Related Content

The key trends Clinicians reviewing a COVID-19 patient's lung CT that reveals the severity of COVID-caused pneumonia. The impact of COVID on radiology was a major, over arching trend at  the 2020 Radiological Society of North America (RSNA) meeting. Getty Imagesbserved at 2020 Radiological Society of North America (RSNA) meeting all focused around COVID-19 (SARS-CoV-2) and the impact it has had on radiology. #RSNA #RSNA20 #RSNA2020

Clinicians reviewing a COVID-19 patient's lung CT that reveals the severity of COVID-caused pneumonia. The impact of COVID on radiology was a major, over arching trend at  the 2020 Radiological Society of North America (RSNA) meeting. Getty Images

Feature | RSNA | January 20, 2021 | By Melinda Taschetta-Millane and Dave Fornell
According to a new research report1 on the contrast media injectors published by MarketsandMarkets, the market was estimated to be $1.3 billion in 2020 and projected to reach $1.9 billion by 2025, at a compound annual growth rate (CAGR) of 7.4 percent over 2020-2025.

The ulrich CTmotion

Feature | Contrast Media Injectors | January 20, 2021 | By Melinda Taschetta-Millane
According to a new...
More complex, longer interventional procedures such as structural heart interventions or this revascularization of a coronary chronic total occlusion (CTO) at Henry Ford Hospital in Detroit, requires angiography imaging systems that have improved image detail and lower radiation dose. However, purchase of new systems was put on hold by many hospitals in 2020 due to the sudden drop in elective procedures and diversion of resources due to the COVID-19. Photo by Dave Fornell.

More complex, longer interventional procedures such as structural heart interventions or this revascularization of a coronary chronic total occlusion (CTO) at Henry Ford Hospital in Detroit, requires angiography imaging systems that have improved image detail and lower radiation dose. However, purchase of new systems was put on hold by many hospitals in 2020 due to the sudden drop in elective procedures and diversion of resources due to the COVID-19. Photo by Dave Fornell.

Feature | Angiography | January 19, 2021 | By Bhvita Jani
January 19, 2021 – With the postponement of non-essential elective surgeries and medical procedures in 2020 to conser
Volpara Health announced two new research studies using AI-powered software to score breast density objectively and consistently to evaluate its impact in mammography and breast cancer risk assessment.
News | Breast Density | December 30, 2020
December 30, 2020 — Volpara Health announced two new research studies using...
All but 3 of the top 25 articles in 2020 were on COVID-19. The other 3 were on MRI contrast advances and the development of a cold-cathode X-ray tube technology. #COVID19

All but 3 of the top 25 articles in 2020 were on COVID-19. The other 3 were on MRI contrast advances and the development of a cold-cathode X-ray tube technology.

Feature | December 23, 2020 | Dave Fornell, Editor
Here are the top 25 best performing articles on the Imaging Technology News (ITN) website from 2020.
Company delivers on last year’s roadmap milestones and continues to advance cloud-native suite of tools to lead industry to the future of enterprise imaging
News | Enterprise Imaging | December 23, 2020
December 23, 2020 — ...
 EvoHealth, a trailblazer in incorporating new technology in healthcare IT software, announced it has exceeded its first milestone of more than 100 customers with over 200 locations.
News | Information Technology | December 22, 2020
December 22, 2020 — EvoHealth, a trailblazer in incorporating n