News | October 06, 2008

Cardiovascular MRI Predicts AF Treatment Outcome

October 8, 2008 – A new MRI-based method, delayed-enhancement cardiovascular MRI (DE-CMRI), allows doctors to detect and measure scarring on walls of heart after treated for atrial fibrillation (AF), according to a study published in the October 7, 2008, issue of the Journal of the American College of Cardiology.

In the study, Nassir F. Marrouche, M.D., assistant professor of internal medicine in the University of Utah School of Medicine and director of the Atrial-Fibrillation Program, and colleagues developed the technique DE-CMRI to create 3D images of the left atrium both before and after RF ablation in patients with AF. They processed and analyzed these images using custom software tools and then used computer algorithms to calculate the extent of LA wall injury.

Marrouche and his colleagues found that all patients who underwent RF ablation showed evidence of left atrium wall injury on MRI three months after the procedure. The pattern of tissue injury correlated with the areas where the radiofrequency energy was applied during RF ablation, and thus, was presumed to reflect tissue scarring. Marrouche and his colleagues also found patients with a higher percentage of LA wall injury were more likely to be free of arrhythmia than patients with lower percentages, suggesting the degree of scarring is linked to the likelihood of success in the RF ablation procedure.

“DE-CMRI is an established method for evaluating the tissues of the heart after a heart attack,” said Marrouche. “But performing DE-CMRI to detect left atrium wall injury is challenging because the wall of the left atrium is so thin.”

The 3D technique used by Marrouche and his colleagues achieves a much greater imaging resolution than the two-dimensional technique typically used to evaluate the extent of tissue damage after a heart attack or in other cardiac disease processes. Marrouche and his colleagues also developed methods of processing the MRI images in order to visualize the entire volume of left atrium wall injury in 3D.

The novel visualization technique and analysis developed by Marrouche and his colleagues potentially could help doctors improve planning for RF ablation procedures by making it easier to identify the heart muscle cells that need to be destroyed. Improved localization and isolation of these heart muscle cells would likely lead to a reduction in the recurrence rate of AF.

“The benefit of 3D MRI is that it visualizes the entire LA wall,” said Marrouche. “And, it is safe and non-invasive, so it can be repeated without significant risk to the patient.”

For more information: content.onlinejacc.org

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
Weight Loss Through Exercise Alone Does Not Protect Knees
News | Orthopedic Imaging | January 11, 2018
January 11, 2018 – Obese people who lose a substantial amount of weight can significantly slow down the degeneration
Neurofeedback Shows Promise in Treating Tinnitus

The standard approach to fMRI neurofeedback. Image courtesy of Matthew Sherwood, Ph.D.

News | Magnetic Resonance Imaging (MRI) | January 11, 2018
January 11, 2018 — Researchers using...
Male Triathletes May Be Putting Their Heart Health at Risk
News | Cardiac Imaging | January 09, 2018
Competitive male triathletes face a higher risk of a potentially harmful heart condition called myocardial fibrosis,...
State-of-the-Art MRI Technology Bypasses Need for Biopsy
News | Magnetic Resonance Imaging (MRI) | January 09, 2018
January 9, 2018 – The most common type of tumor found in the kidney is generally quite small (less than 1.5 in).
New Studies Show Brain Impact of Youth Football
News | Neuro Imaging | January 09, 2018
School-age football players with a history of concussion and high impact exposure undergo brain changes after one...
Overlay Init