News | Magnetic Resonance Imaging (MRI) | January 23, 2018

Brain Imaging Predicts Language Learning in Deaf Children

Study shows that early cochlear implantation is critical to language development in deaf children 

Brain Imaging Predicts Language Learning in Deaf Children

January 23, 2018 – In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict language ability in deaf children after they receive a cochlear implant. This study's novel use of artificial intelligence to understand brain structure underlying language development has broad-reaching implications for children with developmental challenges. It was published in the Proceedings of the National Academy of Sciences of the United States of America.

"The ability to predict language development is important because it allows clinicians and educators to intervene with therapy to maximize language learning for the child," said co-senior author Patrick C. M. Wong, Ph.D., a cognitive neuroscientist, professor and director of the Brain and Mind Institute at The Chinese University of Hong Kong. "Since the brain underlies all human ability, the methods we have applied to children with hearing loss could have widespread use in predicting function and improving the lives of children with a broad range of disabilities," said Wong.

A cochlear implant is the most effective treatment for children born with significant hearing loss when hearing aids are not enough for the child to develop age-appropriate listening and language ability. Decades of research have shown that early cochlear implantation is critical. Although a cochlear implant enables many children with hearing loss to understand and develop speech, some children lag behind their normal-hearing peers despite receiving an implant as an infant or toddler. Helping these children achieve the language and literacy of hearing children is important and the focus of much research, as these skills are critical to academic success, social and emotional well-being and employment opportunities.

"So far, we have not had a reliable way to predict which children are at risk to develop poorer language. Our study is the first to provide clinicians and caregivers with concrete information about how much language improvement can be expected given the child's brain development immediately before surgery," said co-senior author Nancy M. Young, M.D., Medical Director, Audiology and Cochlear Implant Programs at Lurie Children's, a surgeon and professor at Northwestern University Feinberg School of Medicine. "The ability to forecast children at risk is the critical first step to improving their outcome. It will lay the groundwork for future development and testing of customized therapies."

"A one-size-fits-all intensive therapy approach is impractical and may not adequately address the needs of those children most at risk to fall behind," added Wong.

Erin Ingvalson, assistant professor at Florida State University who began work on the project as a post-doctoral student at Northwestern University, said "our goal is to eliminate the gap in language outcomes often found when children with hearing loss are compared to those with normal hearing."

"The ability to optimize therapy for each child with hearing loss will transform many lives," said Ingvalson.

Successful hearing and spoken language development depends on both the ear and the brain. Hearing loss early in life deprives the auditory areas of the brain of stimulation, which causes abnormal patterns of brain development.

"We used MRI [magnetic resonance imaging] to capture these abnormal patterns before cochlear implant surgery and constructed a machine-learning algorithm for predicting language development with a relatively high degree of accuracy, specificity and sensitivity," Wong explained. "Although the current algorithm is built for children with hearing impairment, research is being conducted to also predict language development in other pediatric populations."

For more information: www.pnas.org

 

Related Content

The global radiotherapy devices market is expected to grow from $5.44 billion in 2020 to $5.848 billion in 2021 at a compound annual growth rate (CAGR) of 7.5%

Varian's Ethos artificial intelligence radiotherapy device.

News | Radiation Oncology | September 28, 2021
September 28, 2021 — The global radiotherapy devices market is expected to grow from $5.44 billion in 2020 to $5.848
September 28, 2021 — A computer program trained to see patterns among thousands of breast ultrasound images can aid physicians in accurately diagnosing breast cancer, a new study shows.

Breast ultrasound images show cancer (at left, as dark spot in center and, at right, in red, as highlighted by a computer). Image courtesy of Nature Communications

News | Breast Imaging | September 28, 2021
September 28, 2021 — A computer program trained to see patterns among thousands of...
Esaote, an Italian company leader in the biomedical equipment sector – ultrasound, MRI and software for the medical sector – launched E-shop: the new online store to reach medical professionals more quickly and effectively.
News | Radiology Business | September 27, 2021
September 27, 2021 — Esaote, an Italian company leader in the biomedical equipment sector –...
Zebra Medical Vision now offers artificial intelligence (A) medical imaging analytics for its cardiac solution HealthCCSng, which enables the quantification of the coronary artery calcium (CAC) on CT scans as an incidental finding.
News | Artificial Intelligence | September 27, 2021
September 27, 2021 — Zebra Medical Vision, the deep-learning medical imaging analytics company, announces its eighth
Scientists have identified two subtypes of metastatic prostate cancer that respond differently to treatment, information that could one day guide physicians in treating patients with the therapies best suited to their disease.

Getty Images

News | Prostate Cancer | September 24, 2021
September 24, 2021 — Scientists have identified two subtypes of metastatic...
Owkin, a startup that deploys artificial intelligence (AI) and Federated Learning technologies to augment medical research and enable scientific discoveries, presented findings in Hepatocellular Carcinoma (HCC) with Cleveland Clinic at the 2021 European Society of Medical Oncology (ESMO) conference.

Illustration courtesy of Cleveland Clinic

News | Artificial Intelligence | September 24, 2021
September 24, 2021 — Owkin, a startup that deploys...
Doctors say they should be making medical decisions with patients, not insurance carriers and outline principles for noninvasive testing
News | Cardiac Imaging | September 23, 2021
September 22, 2021 — Test selection should be a shared decision between patient and physician rather than directed by
Paige Prostate, is the first artificial intelligence (AI)-based software designed to identify an area of interest on the prostate biopsy image with the highest likelihood of harboring cancer so it can be reviewed further by the pathologist if the area of concern has not been identified on initial review.
News | Digital Pathology | September 22, 2021
September 22, 2021 — The U.S.
This study shows that thanks to deep learning analysis applied to digitized pathology slides, artificial intelligence can classify patients with localized breast cancer between high risk and low risk of metastatic relapse in the next five years.

Getty Images

News | Artificial Intelligence | September 22, 2021
September 22, 2021 — The RACE AI study conducted by Gustave...