News | Magnetic Resonance Imaging (MRI) | January 23, 2018

Brain Imaging Predicts Language Learning in Deaf Children

Study shows that early cochlear implantation is critical to language development in deaf children 

Brain Imaging Predicts Language Learning in Deaf Children

January 23, 2018 – In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict language ability in deaf children after they receive a cochlear implant. This study's novel use of artificial intelligence to understand brain structure underlying language development has broad-reaching implications for children with developmental challenges. It was published in the Proceedings of the National Academy of Sciences of the United States of America.

"The ability to predict language development is important because it allows clinicians and educators to intervene with therapy to maximize language learning for the child," said co-senior author Patrick C. M. Wong, Ph.D., a cognitive neuroscientist, professor and director of the Brain and Mind Institute at The Chinese University of Hong Kong. "Since the brain underlies all human ability, the methods we have applied to children with hearing loss could have widespread use in predicting function and improving the lives of children with a broad range of disabilities," said Wong.

A cochlear implant is the most effective treatment for children born with significant hearing loss when hearing aids are not enough for the child to develop age-appropriate listening and language ability. Decades of research have shown that early cochlear implantation is critical. Although a cochlear implant enables many children with hearing loss to understand and develop speech, some children lag behind their normal-hearing peers despite receiving an implant as an infant or toddler. Helping these children achieve the language and literacy of hearing children is important and the focus of much research, as these skills are critical to academic success, social and emotional well-being and employment opportunities.

"So far, we have not had a reliable way to predict which children are at risk to develop poorer language. Our study is the first to provide clinicians and caregivers with concrete information about how much language improvement can be expected given the child's brain development immediately before surgery," said co-senior author Nancy M. Young, M.D., Medical Director, Audiology and Cochlear Implant Programs at Lurie Children's, a surgeon and professor at Northwestern University Feinberg School of Medicine. "The ability to forecast children at risk is the critical first step to improving their outcome. It will lay the groundwork for future development and testing of customized therapies."

"A one-size-fits-all intensive therapy approach is impractical and may not adequately address the needs of those children most at risk to fall behind," added Wong.

Erin Ingvalson, assistant professor at Florida State University who began work on the project as a post-doctoral student at Northwestern University, said "our goal is to eliminate the gap in language outcomes often found when children with hearing loss are compared to those with normal hearing."

"The ability to optimize therapy for each child with hearing loss will transform many lives," said Ingvalson.

Successful hearing and spoken language development depends on both the ear and the brain. Hearing loss early in life deprives the auditory areas of the brain of stimulation, which causes abnormal patterns of brain development.

"We used MRI [magnetic resonance imaging] to capture these abnormal patterns before cochlear implant surgery and constructed a machine-learning algorithm for predicting language development with a relatively high degree of accuracy, specificity and sensitivity," Wong explained. "Although the current algorithm is built for children with hearing impairment, research is being conducted to also predict language development in other pediatric populations."

For more information: www.pnas.org

 

Related Content

Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
LVivo EF Cardiac Tool Now Available for GE Vscan Extend Handheld Mobile Ultrasound
Technology | Cardiovascular Ultrasound | September 19, 2018
DiA Imaging Analysis Ltd. (DiA), a provider of artificial intelligence (AI)-powered ultrasound analysis tools,...
Exact Imaging Partners to Improve Prostate Cancer Detection With Artificial Intelligence
News | Prostate Cancer | September 19, 2018
Exact Imaging, makers of the ExactVu micro-ultrasound platform, has partnered with U.K.-based Cambridge Consultants to...
SimonMed Deploys ClearRead CT Enterprise Wide
News | Computer-Aided Detection Software | September 17, 2018
September 17, 2018 — National outpatient physician radiology group SimonMed Imaging has selected Riverain Technologie
Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | September 07, 2018 | By Sabine Sartoretti, M.D.
As soon as the Compressed SENSE technology became available to the MRI team at Kantonsspital Winterthur (Switzerland),...

Image courtesy of Philips Healthcare

Feature | Magnetic Resonance Imaging (MRI) | September 06, 2018 | By Melinda Taschetta-Millane
According to the Prescient & Strategic Intelligence report, “Global Magnetic Resonance Imaging (MRI) Market Size,...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...