Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Radiology Imaging | October 17, 2019

Where Are Radiology’s Film Stars of Yesteryear?

For those who don’t know, soft-copy reading was the interpretation of radiological images on display monitors

Imaging courtesy of Pixabay

Eventually the future moves into the past, and we move on. But some of us wax nostalgic. Soft-copy reading deserves a bit of that.

For those who don’t know, soft-copy reading was the interpretation of radiological images on display monitors. Its alternative, interpreting hard-copy, was the reading of images printed on film.

Today soft-copy reading is the norm — so much so that few (if anyone) even refers to it by its decades-old name. The reason, I think, is because the alternative has largely disappeared along with medical film.

So successful has soft-copy reading become that you might ask why its use was even an issue. Why would anyone — much less a whole community of highly educated people — turn a digital technology into an analog one? In other words, why would anyone print digital images on film? Thirty years ago, these questions were relatively easy to answer.

Film was the go-to medium back then for the display and interpretation of radiological images. It was time-tested. It had been in use since the time of Roentgen. And there was reason to question the diagnostic veracity of electronic displays.

The primary component of display monitors — cathode ray tubes — could vary markedly in performance. Age mattered a lot. This was much different from film, which remained unchanged years after it was “fixed.”

Benchmarking

That is why, since the commercialization of CT and MRI, images from these two modalities had been printed on films. If radiologists were going to base interpretations on soft-copy reading, it had to be proven to be at least as good as the gold standard.

Keep in mind, this was long before the flat panel monitors in common use today; long before algorithms for enhancing images; long before multi-slice and volumetric imaging made film use impractical.

The logic behind printing digital images on film took an odd turn with the development of printers specifically for MRI and CT, ones that used “dry” film, which — by definition — didn’t need “wet” processing. Using just heat (or a combination of heat and light), these printers could be located just about anywhere in a medical facility, right next to an MRI or CT scanner, for example.

The methodology was explained in an article titled “Digital Film Processing: A Comparison of Wet and Dry Processing Methods” in the August 1996 issue of Health Devices. Dry film images were processed “by the films themselves,” the authors wrote.

Within a few years, however, soft-copy reading won out and dry film disappeared. This was due, in large part, to the commercialization of CT multi-slice scanning, when dozens became hundreds, then thousands of images produced during a typical study.

The Digital Revolution

Soft-copy reading is rooted in the birth of the modern computer, which goes back to the 1940s. Thirty years later computed axial tomography was born. CAT — which became CT after “axial” was dropped from the name — was followed by PET and MRI, digital ultrasound, then computed and (finally) digital radiography. All enabled PACS to varying degrees.

PACS opened the door to enterprise imaging. The increasingly digital nature of medical imaging provided the basis for today’s application of artificial intelligence.

They were all part of the digital revolution — a revolution that pulled radiologists out of darkened reading rooms and medicine into the 21st century. In recent years, digitalization has promised that radiologists would no longer be relegated to being “doctors’ doctors.” They were to become members of a patient care team.

But it has been a bittersweet revolution. As “value” ascended the hierarchy of decision making, reimbursements fell. And old ways of working began to change. On-site information technologies began giving way to the cloud. Smart algorithms have begun driving automation. In short, the low-hanging fruit has been plucked.

Defining Value

Today the medical world is in flux. New and enhanced products must meet clinical needs. Being clinically relevant has been built into the definition of value.

Inherent is the goal of satisfying both providers and patients. When it comes to technology, this is achieved through optimization — a balancing act with clinical objectives on one side of a teeter totter, price on the other, and efficiency as the pivot.

In this modern world of medicine, the corporate landscape has shifted tectonically. Gone are many of the small innovators — snapped up by huge conglomerates in corporate mergers and acquisitions. Film companies have morphed into developers and vendors of IT or X-ray equipment — or both.

20-20 Hindsight

Looking back, this transformation makes sense. Companies that once buttered their bread with revenue from film evolved naturally to the next level of storage and display — information technology. So too did many who — rightly so — saw digital X-ray defined by the digital technologies that made film obsolete.

This transformation would not have happened if not for the battle over soft-copy reading. We might think the outcome should have been predictable. But it could not have been — not without knowing how the myriad factors shaped by the digital age would impact medical imaging.

Among the lessons learned is the importance of timing. For the most part, medical imaging played it just right.

Clearly the trick is to be on or just a little ahead of the curve. Get too far in front and the result is impracticality. Get too far behind and you risk obsolescence.

To get to the sweet spot where soft-copy reading was widely accepted, radiology had to prove its value. There had to be a need for its adoption (for soft-copy reading, this was multi-slice CT followed by volumetric imaging seen today in all major modalities, even mammography). And enabling technologies had to be available (e.g., solid-state monitors and image processing software).

That is what turned soft-copy reading into what it is today. Similar confluences will be needed to successfully transform current efforts.

When done right, the future turns into the present so subtly that it makes you wonder what the hubbub was about.

Related Content

A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

News | Magnetic Resonance Imaging (MRI) | July 02, 2020
July 2, 2020 — Axonics Modulation Technologies, Inc., a medical technology company that has developed and is commerci
This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
Researchers reviewed results of prostate biopsies on over 3,400 men who had targets identified on prostate MRI and found that the positive predictive value of the test for prostate cancer was highly variable at different sites
News | Prostate Cancer | July 01, 2020
July 1, 2020 — Prostate MRI is an emerging technology used to identify and guide treatment for...
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for its head CT scan product qER. The US Food and Drug Administration's decision covers four critical abnormalities identified by Qure.ai's emergency room product.
News | Artificial Intelligence | June 30, 2020
June 30, 2020 — Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
The American College of Radiology (ACR) Center for Research and Innovation (CRI) is pleased to announce the development of the COVID-19 Imaging Research Registry (CIRR), an effort by the ACR CRI and the ACR Data Science Institute in collaboration with the ACR and the Society of Thoracic Radiology (STR). Sharyn Katz, M.D., director of research for thoracic radiology at the University of Pennsylvania, chairs the effort’s multiple-disciplinary steering committee, which includes representation from across the i

Getty Images

News | Coronavirus (COVID-19) | June 25, 2020
June 25, 2020 — The American College of Radiology (ACR) Center for R