Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Artificial Intelligence | July 03, 2019

How Telehealth and AI Might Amplify Human Ability

Image courtesy of Pixabay

Hospitalization adds cost to healthcare. So, keeping patients out of the hospital should reduce health costs. But how?

The answer may be found in the use of machines — not as replacements for people, as happened during the first three industrial revolutions — but in their enhancement of what people can do.

The Fourth Industrial Revolution is typically associated with the advent of artificial intelligence (AI). But impacting healthcare will take more than what AI can do alone.

In healthcare, this revolution has to make it possible for physicians and other care givers to do more. AI could be one of the needed technologies. Telehealth (aka telemedicine) could be the other.

 

Where TeleHealth Fits In

The imagery that is the backbone of telehealth — imagery of patients and physicians — has gotten phenomenally good, thanks to high-speed Wi-Fi networks and high-resolution cameras built into mobile devices, such as smartphones.

And fast Wi-Fi-cation has done more than that. It has made remote patient monitoring possible.

Patients who have not been in the same room with their physicians in years could stream health data to physician offices in preparation for virtual visits that could come every six months (or sooner, if the data show a problem). Before or soon after those visits, patients might drop off — or mail — blood, fecal and urine samples, for the laboratory to scan.

Smart watches can gather and send data about the patient’s heart and blood pressure. Every time a telehealth patient steps on the right kind of bathroom scale, a doctor might get the patient’s weight as well as body mass index readings.

And … voila! The future is here. Or is it?

 

Combining TeleHealth and AI

Telehealth and AI can be developed so that medical decision-making remains in the hands of physicians, while machines can fill in and gather information useful to making those decisions. In short, machines can make healthcare incredibly more efficient and consistent. But they probably will also make medical care more complex.

Rather than depending on three or four bits of medical information — a PSA level, prostate exam, Gleason score (determined from a prostate biopsy) and maybe an MRI — future physicians might draw from dozens of sources of information about the possibility of prostate cancer, for example. In the future, a physician might consider genomic and radiomic signatures, as well as the patient’s tolerance for impotency, as determined by analyzing responses to a questionnaire on the subject.

As they do today, physicians will make decisions based on their own experience. But their judgments might also be based on mathematically digested data describing 600 or 700 patients with similar disease — data showing how the patients were treated; the side effects that occurred; how many were cured. The patterns, as defined by smart machines, might suggest what the next steps should be.

These algorithmically determined patterns might come from data so “big” that they would elude humans, if not for the help of machines. These data, in turn, might come from the myriad of monitoring devices.

The technology for much of this is already in hand. Philips is developing AI, as are GE and Siemens; and more than a hundred other companies. GE, Philips and Siemens offer remote patient monitoring to detect problems that can force hospitalization, as do dozens of other companies. Philips has expounded on that with the acquisition of companies that have brought to it video and patient engagement software. GE Healthcare’s virtual care platform (called Mural) collects and displays vital signs, real-time video, even diagnostic images. Other companies, including Apple, are marketing smart watches to gather blood pressure, heart rate and ECG readings.

But the potential of these technologies is still far from being realized. Challenges abound. Among the most daunting are ones related to reimbursement. But they are beginning to be chipped away.

Earlier this year the Centers for Medicare and Medicaid Services (CMS) proposed rules for the 2019 Physician Fee Schedule that would expand telehealth payment. And the federal government has invested hundreds of millions of dollars to develop telehealth. Yet, some tough issues remain.

 

Keeping It Simple

Ironically, keeping it simple will be … difficult.  But if vendors can do so, it will pay off handsomely by minimizing the skills physicians will need to use AI and telehealth tools.

Just as automatic pinsetters made bowling more efficient, AI software that anticipates, then satisfies certain basic needs will streamline workflow. This is unquestionably so, when it comes to automating tedious and time-consuming tasks. But augmenting and amplifying physicians’ actions may require more demanding AI tools. And that could be another story.

AI must stay within the existing workflow. Which raises an interesting possibility.

Just like nurses are needed to keep the flow of work moving in a busy physician’s office, will data scientists be needed to spot trends and do the analyses that doctors will need to solve complex problems?

The trick for the makers of AI and telehealth products will be to keep their use as simple and transparent as possible. Like anti-lock braking, electronic stability and traction control have made all drivers better on slippery roads, AI and telehealth tools have to make all physicians more effective and efficient drivers of healthcare.

While healthcare AI and telehealth may indeed have a bright future, if their potential is to be realized, they must overcome human limitations without adding new burdens. To paraphrase Elton John, physicians can’t be required to understand the science in order to do their job.

And their job is to serve the patient.

Related Content

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief.

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief. Find more images from the COVID-19 pandemic.

 

Feature | Coronavirus (COVID-19) | April 08, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
A recent study earlier this year in the journal Nature, which included researchers from Google Health London, demonstrated that artificial intelligence (AI) technology outperformed radiologists in diagnosing breast cancer on mammograms
Feature | Breast Imaging | April 06, 2020 | By Samir Parikh
A recent study earlier this year in the journal Nature,
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | April 03, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Getty Images

Feature | Coronavirus (COVID-19) | April 02, 2020 | Jilan Liu and HIMSS Greater China Team
Information technologies have played a pivotal role in China’s response to the novel coronavirus...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 the company is now offering a suite of AI solutions Vuno Med-LungQuant and Vuno Med-Chest X-ray for COVID-19, encompassing both lung X-ray and computed tomography (CT) modalities respectively all at once
News | Artificial Intelligence | April 02, 2020
April 2, 2020 — In the face of the COVID-19 pand
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 The Chinese start-up company Infervision launches its AI-based solution InferRead CT Lung Covid-19 also in Europe
News | Artificial Intelligence | March 31, 2020
March 31, 2020 — Lung infections generated by the coronavirus can be detected in...