Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Sponsored Content | Blog | Greg Freiherr, Industry Consultant | Contrast Media | July 31, 2019

BLOG: How Advances in Technology Help Patients and Providers

Power injectors can improve efficiency and patient safety, for example, ensuring that contrast agent is not wasted due to the lack of a saline bolus. Image courtesy of Lior Molvin

Power injectors can improve efficiency and patient safety, for example, ensuring that contrast agent is not wasted due to the lack of a saline bolus. Image courtesy of Lior Molvin

Patient safety and operational efficiency are behind the development of modern contrast media, selection and utilization strategies — as well as refinements in the injector technologies for these media. Much remains to be done.

New agents for MRI and diagnostic sonography were created to get the most from these imaging modalities, which do not rely on ionizing radiation — gadolinium-based agents for MRI; bubble agents for diagnostic ultrasound. The development some three decades ago of nonionic iodinated contrast agents exemplifies the importance of patient safety as a force underlying the development of modern contrast agents.1, 2

Similarly, low-osmolar nonionic contrast agents for CT may have fewer side effects and less nephrotoxicity than traditional ionic, high-osmolar agents. Intravenous MRI contrast agents are not toxic to the kidney, but the development of NSF (nephrogenic systemic fibrosis) is a continuing concern, say opinion leaders. The clinical significance and reason for gadolinium accumulation in tissue among patients without renal impairment, they say, is not known.

It is known, however, that the nonionic molecules of gadolinium chelates have lower osmolality and viscosity, which makes them more digestible at higher concentrations and allows faster bolus injections.3

Sonographic agents use microbubbles to improve the diagnostic yield,4 while maintaining safety.5

 

Technological Evolution Picking Up

From now on, however, much of the innovation involving contrast-enhanced studies will likely involve the power injector. And its evolution could be dramatic.

Just as the cell phone has become much more than a phone, contrast injectors are evolving into new — and different —- roles. Injector-oriented technologies, for example, are already available in the management of protocols and the supply chain. These tools could help assess waste, the number of extravasations, technologist performance, site and shift performance, even department budgets.

“Beyond the obvious ability to standardize injections (to achieve) image consistency, there are so many opportunities for injectors to become clinical devices that cannot be lived without,” said Lior Molvin, a CT technologist and protocol manager for the diagnostic CT group at Stanford Health Care in Palo Alto, Calif.

Simple algebraic tools might be built into injectors, Molvin said. Power injectors could help departments with “just-in-time” supply, for example. This would improve efficiency by reducing the need to over stock contrast agents. “The injector would know exactly how much contrast it has injected, so we would know how much we need to order in order to maintain operational efficiency,” he said. The injector might even link to a data base associated with the ordering cycle.

Injectors could also automatically consider the size of the patient — tall or short; skinny, average or obese — saving time that technologists otherwise may spend factoring body habitus into injection strategies and protecting patients from over- and under-dosing. Even more might be accomplished with the integration of smart algorithms that check the circumstances surrounding extravasations, especially as they pertain to CT and MRI.

 

Greg Freiherr is a contributing editor to ITN. Over the past three decades, he has served as business and technology editor for publications in medical imaging, as well as consulted for vendors, professional organizations, academia, and financial institutions.

 

Editor’s Note: This is the second blog in a series titled Using Contrast Media. The first blog, Why Power Injectors Are Needed for High-quality Imaging, can be found here. How customer needs factor into product innovation will be the focus of the next blog in this series.

 

References:

  1. Pradubpongsa P, Dhana N, Jongjarearnprasert K, et al. Adverse reactions to iodinated contrast media: prevalence, risk factors and outcome-the results of a 3-year period. Asian Pac J Allergy Immunol. 2013;31(4):299-306. https://www.ncbi.nlm.nih.gov/pubmed/24383973
  2. McClennan BL. Ionic and nonionic iodinated contrast media: Evolution and strategies for use. AJR Am J Roentgenol. 1990;155(2):225-233.
  3. Hunt CH, Hartman RP, Hesley GK. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: Retrospective review of 456,930 doses. AJR Am J Roentgenol. 2009;193:1124-1127. https://www.ncbi.nlm.nih.gov/pubmed/19770337
  4. Ignee A, Atkinson, NSS, et.al. Ultrasound contrast agents. Endosc Ultrasound. 2016 Nov-Dec; 5(6): 355–362. http://www.eusjournal.com/article.asp?issn=2303-9027;year=2016;volume=5;issue=6;spage=355;epage=362;aulast=Ignee
  5. Ultrasound Societies Urge FDA to Remove Black Box Warning on Contrast Agents https://www.itnonline.com/content/ultrasound-societies-urge-fda-remove-black-box-warning-contrast-agents

 

Related Content

"Our study demonstrates that a real-world lung cancer screening can perform similar to randomized controlled trials in regard to important performance metrics," the UPenn authors of this AJR article concluded. Image courtesy of American Journal of Roentgenology (AJR)

"Our study demonstrates that a real-world lung cancer screening can perform similar to randomized controlled trials in regard to important performance metrics," the UPenn authors of this AJR article concluded. Image courtesy of American Journal of Roentgenology (AJR)

News | Lung Imaging | July 17, 2020
July 17, 2020 — An online first accepted...
PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

News | PET-CT | July 16, 2020
July 16, 2020 — New research confirms the high impact of...
Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs

Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs using additional physiologically important parameters, for example, glucose transport rate K1 (d), across the entire body. Image courtesy of G.B. Wang, M. Parikh, L. Nardo, et al., University of California Davis, Calif.

News | PET Imaging | July 16, 2020
July 16, 2020 — Results from the first...
World's largest radiation oncology meeting will offer full conference on interactive platform October 25-28, 2020
News | ASTRO | July 09, 2020
July 9, 2020 — Registration opens today for the American Society for Radiation Oncology's (...
Simulation finds starting at age 30 with MRI and mammography to be the preferred strategy; starting at 25 prevented marginally more deaths, but with more testing and emotional stress

Getty Images

News | Breast Imaging | July 09, 2020
July 9, 2020 — Chest radiation is used to treat children with Hodgkin and non-Hodgkin lymphoma as well as lung metast
At the American Association of Physicists in Medicine (AAPM) 2019 meeting, new artificial intelligence (AI) software to assist with radiotherapy treatment planning systems was highlighted. The goal of the AI-based systems is to save staff time, while still allowing clinicians to do the final patient review. 
Feature | Treatment Planning | July 08, 2020 | By Melinda Taschetta-Millane
At the American Association of Physicists in Medicine (AAPM) 201
Changes outlined in new draft U.S. Preventive Services Task Force (USPSTF) lung cancer screening recommendations will greatly increase the number of Americans eligible for screening and help medical providers save thousands more lives each year.

Image courtesy of Cerner

News | Lung Imaging | July 08, 2020
July 8, 2020 — Changes outlined in new draft U.S.
Radiotherapy has been used to treat cancers for more than a century and continues to be utilized in cancer treatment plans today. Since the introduction of radiotherapy, clinicians have been working tirelessly to further refine treatments to better target cancer.
Feature | Radiation Therapy | July 06, 2020 | By Yves Archambault
Everything has room for improvement, right? Right. When it comes to cancer care, it is no different.
Proton therapy has evolved, and future predictions include smaller systems, more sophisticated proton dosimetry and devices that manipulate the proton beam
Feature | Proton Therapy | July 06, 2020 | By Minesh Mehta, M.D.
The field of proton...
Researchers reviewed results of prostate biopsies on over 3,400 men who had targets identified on prostate MRI and found that the positive predictive value of the test for prostate cancer was highly variable at different sites
News | Prostate Cancer | July 01, 2020
July 1, 2020 — Prostate MRI is an emerging technology used to identify and guide treatment for...