Greg Freiherr, Industry Consultant
Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Enterprise Imaging| May 23, 2017

Agents of Change: AI Will Solve Information Overload ... But At What Price?

artificial intelligence

Imagine artificial super intelligence. ... machine cognition beyond human comprehension. Is it the answer to the Fermi Paradox?

Consider that within 50 years of the first radios computers appear; that within a century or two artificial intelligence follows; that today we may be at a time when human intellect outshines that of machines yet still benefits from it. Welcome to the love-fear revolution.

In transportation, financial services and healthcare, artificial intelligence (AI) inspires awe and wonder, even hope. It's comforting to know that its march has been unstoppable from automatic pin setters at bowling alleys to computers that figure your score; speech recognition on smartphones to computer vision on self-driving cars. But it's also easy to fear machine intelligence, to fear the singularity to which it could lead.

The debate can go on — whether today's computers, or the algorithms that run them — are truly "intelligent" or just silicon-based savants. It's irrelevant. The question for the foreseeable future is whether advanced computation can make life better. In medicine — and specifically in radiology — that is defined as whether AI can make providers more efficient; more effective; and, overall, better caregivers.

In press at the Journal of the American College of Radiology are results that indicate the use of AI software can help physicians take better care of their patients. The AI engine is focused just on tracking whether patients with indeterminate or suspicious lesions in the abdomen are properly followed. It was created — and validated — primarily by radiologists at the University of Pennsylvania in Philadelphia who say definitive diagnosis often is delayed due to incomplete but clinically indicated imaging follow-up.

"During the first year after implementation, the engine revealed that no imaging follow-up had been performed in our health system on nearly half of patients for whom follow-up recommendations had been issued," the authors reported.


Shortcomings Fixed

Uncertainty has been long recognized as the culprit behind at least some medical shortcomings. Seven years ago, in the Journal of Digital Imaging, Radiologist Bruce Reiner of the Maryland VA Healthcare System wrote that, since free-text reporting, "uncertainty has been perceived the Achilles heel of the radiology report." This uncertainty, he wrote, can lead to diagnostic errors, delay clinical decisions, increase healthcare costs, and produce adverse outcomes. It can be overcome, however, through quantification, possible with natural language processing, and by combining  standardized report content, data mining — and AI.

These might be leveraged, Reiner wrote, to create "knowledge discovery databases" through which providers can record, track and analyze report data, as well as "create data-driven and automated decision support technologies at the point of care."


Leveraging Big Data

Working with a biomedical data scientist at Dartmouth, a Stanford radiologist showed that machine learning techniques can be used to make sense of otherwise overwhelming volumes of data. The researchers used smart algorithms to extract information from radiology reports contained in a repository spanning multiple institutions. Their objective was to overcome barriers to the re-use of radiological information.

In the January 2016 issue of Artificial Intelligence in Medicine, they reported that their approach "provides an effective automatic method to annotate and extract clinically significant information from a large collection of free-text radiology reports;" that it could be used to help clinicians better understand the radiology reports and prioritize their review process; and it could link radiology reports to information from other data sources such as electronic health records and the patient's genome.

"Extracted information also can facilitate disease surveillance, real-time clinical decision support for the radiologist, and content-based image retrieval," they stated.

In the March 2017 issue of European Radiology, radiologists from prestigious institutions across the U.S. stated that information technology will — without question — change both the practice of medical imaging and image-guided therapies. "Each element of the imaging continuum will be affected by substantial increases in computing capacity coincident with the seamless integration of digital technology into our society at large," they wrote.

Among their assertions:

  • The analysis of big data will correlate health information across multiple domains;
  • Advances in data mining will improve the quality of medical decision-making;
  • The use of clinical decision support will make resource utilization consistent and appropriate; and
  • Business analytics will allow radiologists to get the most from imaging resources.

Last December, Eric J. Topol, M.D., of Scripps Research Institute and Saurabh Jha at the University of Pennsylvania in Philadelphia stated that the combination of big data and artificial intelligence will change radiology and other medical specialties. Seeded with smart algorithms, a machine may become the "equivalent of a general radiologist with super-specialist skills in every domain — a radiologist's alter ego and nemesis." In their JAMA viewpoint article, they advised radiologists to plan for a future in which AI is an integral part.

Are radiologists ready? 

Is anyone?


Editor’s note: This is the fourth blog in four-part series on Agents of Change. The first blog, “iPads On Track To Be Radiologists' BYOD of Choice,” can be found here. The second blog, “Agents of Change: Interoperability Standards Offer Carrot Over Stick” can be found here. The third blog, “Cybersecurity In A World Of Old And New,” can be found here.

Related Content

Sponsored Content | Videos | Enterprise Imaging | February 20, 2019
At RSNA 2018, Philips Healthcare introduced Performance Bridge as an integral part of its IntelliSpace Enterprise Edi
Fujifilm Exhibits Enterprise Imaging Solutions and Artificial Intelligence Initiative at HIMSS 2019
News | Enterprise Imaging | February 15, 2019
Fujifilm Medical Systems U.S.A. Inc. and Fujifilm SonoSite Inc. showcased their enterprise imaging and informatics...
PaxeraHealth Launching Universal Image Sharing Platform at ECR 2019
News | PACS Accessories | February 13, 2019
PaxeraHealth will launch the PaxeraShare image sharing platform at the 2019 European Congress of Radiology (ECR) annual...
Fujifilm Launches Latest Synapse 3D Version at HIMSS 2019

The new Intravoxel Incoherent Motion (IVIM) MR application in Synapse 3D

Technology | Advanced Visualization | February 08, 2019
Fujifilm Medical Systems U.S.A. will debut the latest version of its Synapse 3D solution at the Healthcare Information...
Laurel Bridge Software Highlights New Imaging Interoperability Clients at HIMSS19
News | Enterprise Imaging | February 07, 2019
Laurel Bridge Software added more than 40 new clients in 2018, in addition to helping more clinical information...
Philips Spotlights IntelliSpace Enterprise Edition at HIMSS 2019
News | Enterprise Imaging | February 06, 2019
Philips announced it has expanded its IntelliSpace Enterprise Edition, which combines Philips Radiology, Cardiology...
NucleusHealth Introduces StatStream+ Technology for Medical Image Cloud Streaming
Technology | Remote Viewing Systems | January 24, 2019
Medical image management and teleradiology company NucleusHealth debuted the next milestone in the cloud...
Charlotte Radiology Chooses Sectra as Breast Imaging Vendor
News | Breast Imaging | January 23, 2019
International medical imaging IT and cybersecurity company Sectra will install its enterprise breast imaging solution...
Partners HealthCare Chooses Visage 7 for Enterprise Imaging
News | Enterprise Imaging | January 18, 2019
Visage Imaging Inc. announced the signing of Partners HealthCare, the largest health system in Massachusetts, for...
Seamless Interoperability – Fact or Fiction? This webinar will show how Nemours Children’s Health System adoption of ScImage’s PICOM365 Enterprise PACS  improved workflow. The product will be highlighted at HIMSS 2019.
Sponsored Content | Webinar | PACS | January 17, 2019
This ScImage-sponsored ITN/DAIC webinar will be held at 2 p.m. Eastern time, Wednesday, Feb. 6, 2019.