Dave Fornell, ITN Editor
Dave Fornell, ITN Editor

Dave Fornell is the editor of ITN and DAIC magazines

Blog | Dave Fornell, ITN Editor | HIMSS | March 03, 2017 | Dave Fornell

Two Technologies That Offer a Paradigm Shift in Medicine at HIMSS 2017

augmented reality, virtual reality, medical imaging, surgery, Novarad, operating room

A view through a HoloLens augmented reality visor showing an overlaid brain image co-registered with a live patient on a table at HIMSS 2017.

Information technology (IT) is among the least sexy areas to cover in medical technology advances, and is often difficult to find really interesting news as I sift through more than 1,300 vendors at the massive annual Health Information and Management Systems Society (HIMSS) conference. However, at this year’s conference I found two exciting new technologies that I feel have the potential to become paradigm shifts in medicine. The first is the integration of artificial intelligence into medical imaging IT systems. The second, and coolest tech at HIMSS, was the use of augmented reality 3-D imaging visors to create a heads-up display of 3-D imaging anatomical reconstructions, or complete computed tomography (CT) or magnetic resonance imaging (MRI) datasets surgeons can use in the operating room (OR).

The medical imaging applications of augmented reality were shown by two vendors at HIMSS, although there were dozens of booths that had the same Microsoft HoloLens augmented reality visors with fun activities in attempts to draw in attendees. TeraRecon debuted its cloud-based augmented reality solution, the HoloPack Portal, which extends the TeraRecon 3-D viewing of CT scan anatomical reconstructions to true 3-D projected in a headset viewer to provide real 3-D image viewing using the Microsoft HoloLens visor. The system uses voice commands and finger movements to enlarge, shrink or rotate the 3-D images so surgeons do not have to break the sterile field in the OR.

Novarad showed a similar work-in-progress system using the HoloLens that allowed attendees to see registered CT and MRI datasets overlaid on a live patient on a table. Using hand and finger gestures in the air in front of the visitor, the user can go through the dataset slice by slice, or change the orientation of the slices. Novarad also showed a video of how the system would work in a real OR so surgeons can see the underlying anatomical structures for real-time navigation without needing to look at a reference screen across the room and ask someone else to change the view to what they need.

After attending HIMSS, I actually feel energized about the prospects artificial intelligence (AI) may offer medicine. But, unlike the science fiction image that snaps into most people’s minds when you talk about AI, it will not be a cool, interactive, highly intelligent robot that will replace doctors. In fact, most users will not even be aware AI is assisting them in the backend of their electronic medical record (EMR) systems. AI is a topic that has been discussed for a few years now at all the medical conferences I attend, but I saw some of my first concrete examples of how AI (also called deep learning or machine learning) will help clinicians to significantly reduce time and workflow efficiency. AI will accomplish this by working in the background as an overlay software system that sits on top of the  PACS, specialty reporting systems and medical image archives at a hospital.

The AI algorithms are taught through machine learning to recognize complex patterns and relations of specific types of data that are relevant to the image or disease states being reviewed. In one example I saw from Agfa’s new integration of IBM Watson’s AI, the system was smart enough to look at a digital X-ray image and realize the patient had lung cancer and evidence of prior lung and heart surgeries. It automatically searched for specific records for the patient from oncology treatments, cardiology, prior chest exams from various modalities, recent lab results and relevant patient information on their history of smoking.

Philips Healthcare showed its Illumeo adaptive intelligence software, which uses AI to speed workflow. The example demonstrated was for oncology, where a computed tomography (CT) exam showed several tumors. The user can hover and click on a specific piece of anatomy on a specific slice and orientation. The system then automatically pulls in prior CT scans of the game region and presents the images from each exam in the same slice and orientation as the current image. If the AI determines it is a tumor, the system also runs auto quantification of the tumor sizes from all the priors and presents them in a side-by-side comparison. The goal of the software is to greatly speed up workflow and assist doctors in their tasks.

AI is also making its appearance in business and clinical analytical software, as well as imaging modality software, where it can automatically identify all the organs and anatomy, orientate the images into the standard reading reviews and perform auto quantification. This is already available on some systems, including echocardiography for automated ejection fractions and wall motion assessments.  

Watch the VIDEO from HIMSS 2016 "Expanding Role for Artificial Intelligence in Medical Imaging."

Read the article from HIMSS 2017 "How Artificial Intelligence Will Change Medical Imaging."

Related Content

Carestream’s X-ray digital tomosynthesis functionality creates three-dimensional datasets from digital radiography (DR) that can be scrolled through similar to computed tomography (CT) imaging. It received 510(k) clearance from the U.S. Food and Drug Administration (FDA) in January 2020. Digital tomosynthesis uses a single sweep of X-ray exposures and streamlines operator workflow by separating the process of DT exposure acquisition from image volume formation.
News | Digital Radiography (DR) | January 15, 2020
January 15, 2020 — Carestream’s X-ray digital tomosynthesis (DT) functionality, which creates three-dimensional datas
Konica Minolta Business Solutions, U.S.A., Inc. (Konica Minolta) announced its status as a Google Cloud Premier Partner.
News | Archive Cloud Storage | January 14, 2020
January 14, 2020 — ...
Videos | RSNA | January 13, 2020
ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the
Videos | Advanced Visualization | December 30, 2019
This is a hologram of a fracture from a...
This is artificial intelligence on Fujifilm's mobile digital radiography system to immediately detect pneumothorax (a collapsed lung) and show the location to the technologist and attending physician in a unit before the image is even uploaded to the PACS for a read. AI applications like this that have immediate impact on critical patient care saw a lot of interest at RSNA 2019.

This is work-in-progress artificial intelligence app on Fujifilm's mobile digital radiography system to immediately detect pneumothorax (a collapsed lung), The AI highlights the area of interest to show the location to the technologist and attending physician in a unit before the image is even uploaded to the PACS for a read by a radiologist. The technology also can flag the study for an immediate read in the PACS worklist for confirmation by a human. This technology is from a third-party and will be offered on Fujifilm's REiLI AI platform. Applications like this that have immediate impact on critical patient care saw a lot of interest at RSNA 2019. Photos by ITN Editor Dave Fornell.

Feature | Artificial Intelligence | December 27, 2019 | Siddharth Shah and Srikanth Kompalli, Frost & Sullivan
Radiology artificial intelligence (AI) was again the hottest topic at the 2019...
News | Remote Viewing Systems | December 27, 2019
December 27, 2019 — The Radiological Society of North America (RSNA) and Carequality have developed the Imaging Data
The Radiological Society of North America (RSNA) presented its eighth Alexander R. Margulis Award for Scientific Excellence to Jae Ho Sohn, M.D., from the Radiology & Biomedical Imaging Department at the University of California in San Francisco (UCSF)

Jae Ho Sohn, M.D.

News | RSNA | December 24, 2019
December 24, 2019 — The Radiological Society of North America (R