News | Magnetic Resonance Imaging (MRI) | September 07, 2021

Neuroscientists at the Beckman Institute for Advanced Science and Technology carried out comparative studies to determine safe operating conditions for multiband EEG-fMRI imaging while maintaining acceptable data quality standards

Neuroscientists at the Beckman Institute for Advanced Science and Technology carried out comparative studies to determine safe operating conditions for multiband EEG-fMRI imaging while maintaining acceptable data quality standards

A team of psychologists and neuroscientists at the Beckman Institute for Advanced Science and Technology including Sepideh Sadaghiani, Maximillian Egan, Ryan Larsen, and Brad Sutton published a study to establish safe use of electroencephalography coupled with newly developed functional MRI sequences. Image courtesy of the Beckman Institute for Advanced Science and Technology.


September 7, 2021 — A team of psychologists and neuroscientists at the Beckman Institute for Advanced Science and Technology led by assistant professor of psychology Sepideh Sadaghiani and graduate student Maximillian Egan published a study to establish safe use of electroencephalography coupled with newly developed functional magnetic resonance imaging (MRI) sequences. 

In recent years, the field of fMRI has seen drastic improvements in a new type of scan called multiband imaging. fMRI, which examines brain function through a mechanism based on oxygenation of the blood, can be a slow technique. With the newer multiband fMRI imaging sequences, scientists can scan the brain faster and in higher resolution, enabling more detailed insights into brain organization and function.

The Sadaghiani lab at Beckman is coupling this faster fMRI scanning with EEG data to quickly obtain information on electrical signaling in the brain.

Because multiband fMRI imaging is a new technology, conducting it safely requires re-examining existing protocols. Experimentation revealed that multiband sequences’ increased speed can heat the body and EEG electrodes much faster than single-band sequences. This is concerning when electrodes are placed around the subject’s head, which occurs when fMRI imaging is coupled with EEG data collection.

This makes faster multiband imaging a double-edged sword, accelerating the imaging process and requiring care to maintain safe use by keeping the heating at the EEG electrodes in check.

Collaborating with Ryan Larsen, a research scientist at Beckman, and Brad Sutton, a professor of bioengineering and the technical director of Beckman’s Biomedical Imaging Center, Egan and colleagues established safety and data quality standards for game-changing neuroscientific assessment technology that will allow scientists using multiband EEG-fMRI to predict the heating output while using this technique, and design protocols to reduce heating down to single-band levels.

To predict the heating achieved with new operating sequences, the research team carried out comparative heating studies using single-band and multiband sequences. The comparative studies showed that while using specific operating sequences, the heating seen in multiband imaging is comparable to that seen in single-band imaging. The team also mitigated the presence of artifacts observed due to the employment of these complex imaging techniques, helping to define standards for acceptable data using safe multiband imaging sequences.

“This safety study facilitates a comprehensive understanding of brain function through the concurrent recording of EEG with accelerated fMRI. As an example, our lab uses this approach to study the human brain’s connectome (whole-brain neural connectivity pattern) at unprecedented spatial and temporal resolution,” Sadaghiani said.

This study is indicative of the collaborative efforts that are needed to develop, establish, and standardize the new technologies that propel science today. The Beckman Institute is a center for such collaborative efforts, leveraging diverse expertise to advance imaging science and our understanding of the brain.

For more information: https://beckman.illinois.edu/


Related Content

News | Artificial Intelligence

May 31, 2023 — GE HealthCare announced US FDA 510(k) clearance of Precision DL – a new, revolutionary deep learning ...

Time May 31, 2023
arrow
News | Radiology Business

May 30, 2023 — Strategic Radiology (SR) welcomed 23-radiologist Radiology Associates of Eugene, OR, to the national ...

Time May 30, 2023
arrow
News | Radiology Business

May 26, 2023 — Siemens Healthineers and CommonSpirit Health have agreed to acquire Block Imaging. This new acquisition ...

Time May 26, 2023
arrow
News | Computed Tomography (CT)

May 26, 2023 — GE HealthCare, a leading medical technology innovator, announced today its largest ever CT deal in the ...

Time May 26, 2023
arrow
News | Pediatric Imaging

May 24, 2023 — A new advanced form of computed tomography (CT) imaging called photon-counting computed tomography (PCCT) ...

Time May 24, 2023
arrow
News | PET Imaging

May 22, 2023 — New research finds that the brains of otherwise healthy military personnel who are exposed to explosions ...

Time May 22, 2023
arrow
News | ACR

May 19, 2023 — The Radiology Leadership Institute (RLI) named Norman J. Beauchamp Jr., MD, MHS, FACR, Arl Van Moore Jr ...

Time May 19, 2023
arrow
News | Radiology Imaging

May 19, 2023 — Asymptomatic adults with a high accumulation of fat in their muscles, known as myosteatosis, are at an ...

Time May 19, 2023
arrow
News | Computed Tomography (CT)

May 18, 2023 — Royal Philips, a global leader in health technology, announced the launch of the Philips CT 3500, a new ...

Time May 18, 2023
arrow
News | Digital Radiography (DR)

May 18, 2023 — Carestream Health’s new, versatile DRX-LC Detector is designed to improve patient comfort, image quality ...

Time May 18, 2023
arrow
Subscribe Now