Automated abdominal adipose tissue segmentation into SAT, VAT via Dixon MRI in different children

Automated abdominal adipose tissue segmentation into SAT, VAT via Dixon MRI in different children. In each image, top and bottom images represent fat-only images without (top) and with (bottom) segmentation. Blue area denotes SAT, and green area denotes VAT. Left, center, and right represent three children with varying body sizes and varying amounts of abdominal SAT and VAT. (Left) 13-year-old underweight girl. Dice similarity coefficient and volumetric similarity are for SAT, 0.94 and 0.99, and for VAT are 0.85 and 0.92. (Center) 13-year-old underweight boy. Dice similarity coefficient and volumetric similarity are for SAT, 0.91 and 0.96, and for VAT, 0.82 and 0.90. (Right) 13-year-old normal-weight girl. Dice similarity coefficient and volumetric similarity are for SAT, 0.97 and 0.98, and for VAT are 0.86 and 0.95. 


August 18, 2023 — According to an accepted manuscript published in the American Journal of Roentgenology (AJR), an automated model could enable large-scale studies in adolescent populations that investigate abdominal fat distribution on MRI, as well as associations of fat distribution with clinical outcomes. 

Noting that a global increase in childhood obesity has created the need to accurately quantify body fat distribution, “we trained and evaluated the 2D-CDFNet model on Dixon MRI in adolescents,” wrote co-first author Tong Wu, MD, from the department of radiology and nuclear medicine at Erasmus MC University Medical Center in The Netherlands. 

Watch Dr. Wu discuss training and evaluating this 2D-CDFNet model on Dixon MRI in adolescents. 

Embedded within the Generation R Study—a prospective population-based cohort study in Rotterdam—Wu et al.’s AJR manuscript included 2,989 children (mean age, 13.5 years; 1,432 boys, 1,557 girls) who underwent investigational whole-body Dixon MRI upon age 13. A competitive dense fully convolutional network (2D-CDFNet) was trained from scratch to segment abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from Dixon images. The model underwent training, validation, and testing in 62, 8, and 15 children, respectively, selected via stratified random sampling with manual segmentation for reference. The AJR authors then assessed the performance of their segmentation using Dice similarity coefficient and volumetric similarity. Two independent observers visually evaluated automated segmentations in 504 children, selected by stratified random sampling, as well as scoring undersegmentation and oversegmentation (scale of 0-3). 

Ultimately, this model for automated SAT and VAT segmentation from Dixon MRI showed strong quantitative performance (Dice coefficients and volumetric similarity relative to manual segmentations: range, 0.85-0.98) and qualitative performance (best possible visual score of 3/3 by two independent observers in 95-99% of assessments). 

For more information: www.arrs.org


Related Content

News | Artificial Intelligence

June 18, 2024 — The advancement of Artificial Intelligence (AI) in healthcare to support diagnostic decision making ...

Time June 18, 2024
arrow
News | PET Imaging

June 18, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 18, 2024
arrow
News | Lung Imaging

June 18, 2024 — A new study led by American Cancer Society (ACS) researchers shows less than one-in-five eligible ...

Time June 18, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

June 17, 2024 — MRI has transformed neuroscience research over the past 50 years, but research participants have had to ...

Time June 17, 2024
arrow
News | Radiology Business

June 17, 2024 — Strategic Radiology welcomed Northwest Radiologists, Inc, a 20-radiologist practice based in Bellingham ...

Time June 17, 2024
arrow
Feature | Imaging Technology News - ITN

Dear Friends and Readers of ITN, Can you spare 3 minutes today to give us some feedback? Please share your insight with ...

Time June 17, 2024
arrow
News | Pediatric Imaging

June 13, 2024 — Cervical spine injuries in children are relatively rare but can have serious consequences, like ...

Time June 13, 2024
arrow
News | MRI Breast

June 12, 2024 — Royal Philips recently announced the 1,111th installation of its revolutionary BlueSeal 1.5T magnet ...

Time June 12, 2024
arrow
News | Neuro Imaging

June 12, 2024 — Brainet, a developer of cutting-edge diagnostic tools for assessing brain health, and SimonMed Imaging ...

Time June 12, 2024
arrow
News | SPECT-CT

June 11, 2024 — A newly developed radiotracer can generate high quality and readily interpretable images of cardiac ...

Time June 11, 2024
arrow
Subscribe Now