News | Computed Tomography (CT) | March 06, 2020

Automated CT Biomarkers Predict Cardiovascular Events Better Than Current Practice

Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data

Figure 1: Depiction of the fully automated CT biomarkers tools used in this study. (A) Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data. (B) Case example in an asymptomatic 52-year-old man undergoing CT for colorectal cancer screening. At the time of CT screening, he had a body-mass index of 27·3 and Framingham risk score of 5% (low risk). However, several CT-based metabolic markers were indicative of underlying disease. Multivariate Cox model prediction based on these three CT-based results put the risk of cardiovascular event at 19% within 2 years, at 40% within 5 years, and at 67% within 10 years, and the risk of death at 4% within 2 years, 11% within 5 years, and 27% within 10 years. At longitudinal clinical follow-up, the patient suffered an acute myocardial infarction 3 years after this initial CT and died 12 years after CT at the age of 64 years. (C) Contrast-enhanced CT performed 7 months before death for minor trauma was interpreted as negative but does show significant progression of vascular calcification, visceral fat, and hepatic steatosis. HU=Hounsfield units.

AUROCs for predicting overall survival. (A) AUROCs for the clinical parameters of FRS and BMI, as well as univariate CT measures of aortic calcification and muscle density for predicting overall survival over a 5-year time period

Figure 2: AUROCs for predicting overall survival. (A) AUROCs for the clinical parameters of FRS and BMI, as well as univariate CT measures of aortic calcification and muscle density for predicting overall survival over a 5-year time period. (B) Multivariate CT-based aortic calcification, muscle density, and liver density for predicting overall survival over a 2-year time period. AUROC=area under the receiver operating characteristic curve. BMI=body-mass index. FRS=Framingham risk score.

Kaplan-Meier time-to-death plots by quartile for clinical parameter and univariate CT biomarkers  BMI=body-mass index

Figure 3: Kaplan-Meier time-to-death plots by quartile for clinical parameter and univariate CT biomarkers; BMI=body-mass index. FRS=Framingham risk score. HR=hazard ratio. Q=quartile.

March 6, 2020 — Researchers at the National Institutes of Health and the University of Wisconsin have demonstrated that using artificial intelligence to analyze computed tomography (CT) scans can produce more accurate risk assessment for major cardiovascular events than current, standard methods such as the Framingham risk score (FRS) and body-mass index (BMI).

More than 80 million body CT scans are performed every year in the U.S. alone, but valuable prognostic information on body composition is typically overlooked. In this study, for example, abdominal scans done for routine colorectal cancer screening revealed important information about heart-related risks — when AI was used to analyze the images.

The study compared the ability of automated CT-based body composition biomarkers derived from image-processing algorithms to predict major cardiovascular events and overall survival against routinely used clinical parameters. The investigators found that the CT-based measures were more accurate than FRS and BMI in predicting downstream adverse events including death or myocardial infarction, cerebrovascular accident, or congestive heart failure. The results appeared in The Lancet Digital Health.

"We found that automated measures provided more accurate risk assessments than established clinical biomarkers," said Ronald M. Summers, M.D., Ph.D., of the NIH Clinical Center and senior author of the study. "This demonstrates the potential of an approach that uses AI to tap into the biometric data embedded in all such scans performed for a wide range of other indications and derive information that can help people better understand their overall health and risks of serious adverse events."

The study used five AI computer programs on abdominal CT scans to accurately measure liver volume and fatty change, visceral fat volume, skeletal muscle volume, spine bone mineral density, and artery narrowing. Researchers found that not only did the combination of automated CT-based biomarkers compare favorably with the FRS and BMI for predicting cardiovascular events and death before any symptoms were present but in fact, the CT measure of aortic calcification, that is buildup of calcium deposits in the aortic valve, alone significantly outperformed the FRS for major cardiovascular events and overall survival.

The researchers also observed that BMI was a poor predictor of cardiovascular events and overall survival, and all five automated CT-based measures clearly outperformed BMI for adverse event prediction.

"This opportunistic use of additional CT-based biomarkers provides objective value to what doctors are already doing," said Perry J. Pickhardt, M.D., of the University of Wisconsin School of Medicine & Public Health, lead and corresponding author of the study. "This automated process requires no additional time, effort, or radiation exposure to patients, yet these prognostic measures could one day impact patient health through presymptomatic detection of elevated cardiovascular or other health risks."

This research builds on prior efforts designing AI algorithms that Summers has undertaken in his lab in the NIH Clinical Center's Radiology and Imaging Sciences Department and his previous collaboration with Pickhardt to develop, train, test, and validate fully automated algorithms for measuring body composition using abdominal CT. The researchers plan to test the approach in other studies, including more racially diverse populations.

For more information: www.nih.gov

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

Getty Images

Feature | Coronavirus (COVID-19) | April 03, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | April 03, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips’ TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. Photo by Dave Fornell

Feature | Radiology Imaging | April 02, 2020 | By Katie Caron
A new year — and decade — offers the opportunity to reflect on the advancements and challenges of years gone by and p
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Getty Images

Feature | Coronavirus (COVID-19) | April 02, 2020 | Jilan Liu and HIMSS Greater China Team
Information technologies have played a pivotal role in China’s response to the novel coronavirus...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Updated CT scoring criteria from AJR considers both lobe involvement and changes in CT findings to quantitatively and accurately evaluate the progression of COVID-19 pneumonia

CT scoring criteria were applied to images from sequential chest CT examinations. A, Initial chest CT image obtained 2 days after onset of symptoms shows small region of subpleural ground-glass opacities in right lower lobe, for CT score of 1. B, Chest CT image obtained on day 3 of treatment shows slightly enlarged region of subpleural ground-glass opacities with partial crazy-paving pattern and consolidation, for CT score of 3. C, Chest CT image obtained on day 5 of treatment shows partial resolution of consolidation, for CT score of 2. D, Chest CT image obtained on day 14 of treatment shows continued resolution of consolidation with minimal residual ground-glass opacities, for CT score of 1. Image courtesy of American Journal of Roentgenology (AJR)

News | Computed Tomography (CT) | April 02, 2020
April 2, 2020 — Updated computed t...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 the company is now offering a suite of AI solutions Vuno Med-LungQuant and Vuno Med-Chest X-ray for COVID-19, encompassing both lung X-ray and computed tomography (CT) modalities respectively all at once
News | Artificial Intelligence | April 02, 2020
April 2, 2020 — In the face of the COVID-19 pand
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...