News | March 23, 2015

Autistic, Non-autistic Brain Differences Isolated for First Time

English researchers use functional MRI to assess billions of connections brain regions

autism, fMRI, University of Warwick, voxels, BWAS

This is a brain model with regions of interest highlighted. Photo courtesy of University of Warwick.

March 23, 2015 — The functional differences between autistic and non-autistic brains have been isolated for the first time, following the development of a new methodology for analyzing magnetic resonance imaging (MRI) scans.

Developed by researchers at the University of Warwick, the methodology — called Brain-Wide Association Analysis (BWAS) — is the first capable of creating panoramic views of the whole brain and provides scientists with an accurate 3-D model to study.

The researchers used BWAS to identify regions of the brain that may make a major contribution to the symptoms of autism.

BWAS does so by analyzing 1,134,570,430 individual pieces of data — covering the 47,636 different areas of the brain — called voxels, which comprise a functional MRI (fMRI) scan and the connections between them.

Previous methodologies were unable to process this level of data and were restricted to modeling only limited areas.

The ability to analyze the entire dataset from an fMRI scan provided the Warwick researchers the opportunity to compile, compare and contrast accurate computer models for both autistic and non-autistic brains.

Led by BWAS developer Prof. Jianfeng Feng, from the University of Warwick's Department of Computer Science, the researchers collected the data from hundreds of fMRI scans of autistic and non-autistic brains.

By comparing the two subsequent models, the researchers isolated 20 examples of difference, where the connections between voxels of the autistic brain were stronger or weaker than the non-autistic.

The identified differences include key systems involved with brain functions relating to autism. Feng explained the findings:

"We identified in the autistic model a key system in the temporal lobe visual cortex with reduced cortical functional connectivity. This region is involved with the face expression processing involved in social behavior. This key system has reduced functional connectivity with the ventromedial prefrontal cortex, which is implicated in emotion and social communication."

The researchers also identified in autism a second key system relating to reduced cortical functional connectivity, a part of the parietal lobe implicated in spatial functions.

They propose that these two types of functionality — face expression-related, and of one's self and the environment — are important components of the computations involved in theory of mind, whether of oneself or of others, and that reduced connectivity within and between these regions may make a major contribution to the symptoms of autism.

The researchers argue that the methodology can potentially isolate the areas of the brain involved with other cognitive problems, including obsessive compulsive disorder, ADHD and schizophrenia.

By using meta-analysis and a rigorous statistics approach the Warwick researchers were able to collect and use a big dataset to obtain significant results, the likes of which have not been seen in autistic literature before. Professor Feng explains:

"We used BWAS to analyze resting state fMRI data collected from 523 autistic people and 452 controls. The amount of data analyzed helped to achieve the sufficient statistical power necessary for this first voxel-based comparison of whole autistic and non-autistic brains. Until the development of BWAS this had not been possible.

"BWAS tests for differences between patients and controls in the connectivity of every pair of voxels at a whole brain level. Unlike previous seed-based or independent components-based approaches, this method has the great advantage of being fully unbiased in that the connectivity of all brain voxels can be compared, not just selected brain regions."

The research, published in the journal Brain, is titled “Autism: Reduced Connectivity between Cortical Areas Involved with Face Expression, Theory of Mind, and the Sense of Self.”

For more information: www.warwick.ac.uk

Related Content

Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
Russian Team Developing New Technology to Significantly Reduce MRI Research Costs
News | Magnetic Resonance Imaging (MRI) | January 16, 2018
January 16, 2018 — Researchers from the NUST MISIS Engineering Center for Industrial Technologies in Russia have deve
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
CT Shows Enlarged Aortas in Former Pro Football Players

3-D rendering from a cardiac CT dataset demonstrating mild dilation of the ascending aorta.

News | Computed Tomography (CT) | January 11, 2018
Former National Football League (NFL) players are more likely to have enlarged aortas, a condition that may put them at...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
Overlay Init