News | Artificial Intelligence | August 09, 2021

Scientists in Anant Madabhushi computational imaging lab confirm role of collagen structure in tissue for predicting aggressiveness of tumors, recurrence of cancer

Scientists at Case Western Reserve University have used artificial intelligence (AI) to identify new biomarkers for breast cancer that can predict whether the cancer will return after treatment — and which can be identified from routinely acquired tissue biopsy samples of early-stage breast cancer.

August 9, 2021 — Scientists at Case Western Reserve University have used artificial intelligence (AI) to identify new biomarkers for breast cancer that can predict whether the cancer will return after treatment — and which can be identified from routinely acquired tissue biopsy samples of early-stage breast cancer.

 The key to that initial determination is collagen, a common protein found throughout the body, including in breast tissue. Previous research had suggested that the collagen network, or arrangement of the fibers, relates strongly to breast cancer aggressiveness. But this work by Case Western Reserve researchers definitively demonstrated collagen’s critical role — using only standard tissue biopsy slides and AI.

The researchers, using machine-learning technology to analyze a dataset of digitized tissue samples from breast cancer patients, were able to prove that a well-ordered arrangement of collagen is a key prognostic biomarker for an aggressive tumor and a likely recurrence.

 Conversely, they showed that a disordered or broken-down collagen infrastructure not only indicates a better outcome, but actually promotes one. They also found that the disordered collagen network prevents an otherwise aggressive tumor from migrating out of the breast tissue and helps prevent its return after various cancer treatments like chemotherapy.

“It sounds counter-intuitive, but the collagen fibers play a role in tumor migration,” said Anant Madabhushi, the Donnell Institute Professor of Biomedical Engineering at Case Western Reserve and head of the Center for Computational Imaging and Personalized Diagnostics (CCIPD). “One way to understand it is to say that if the collagen ‘highway’ is in terrible shape, it’s more difficult for the tumor to migrate, but if it’s smooth and organized, it makes it easier for the tumor to hitch a ride.”

 Doctoral student Haojia Li led the research, which was published in the journal npj Breast Cancer. Other authors included Pingfu Fu, professor of  Population and Quantitative Health Sciences at the Case Western Reserve School of Medicine, and others from several institutions.

Simple tissue slides, complex computing

 Li said the project was important because:

  • It validates findings from other published research that suggested highly organized collagen indicates a worse prognosis.
  • It was accomplished with digitized images of those simple tissue slides, suggesting this method could become part of a pathologist’s routine. Current methods for examining and investigating the collagen architecture require an expensive and less common electron

“Our method would make predicting outcomes much more available to more doctors and in hospitals which don’t have the resources to have an advanced imaging microscope,” Li said. “That’s why this is so exciting—because it can give the physician the information he or she needs to guide how aggressively to treat the cancer.”

 The computational work was done in 2020, based on a dataset of routine tissue samples, known as H&E (hematoxylin and eosin) stain slides, taken from patients diagnosed with early stage Estrogen Receptor Positive (ER+) breast cancer. 

 Breast cancer is the second leading cause of cancer death among women in the United States, with approximately 80% of these cancers being ER+ and 64% being early stage, Li said.

 Madabhushi said that because the models built by his team were validated on a completed clinical trial data set, it would “provide a higher level of evidence with regard to the validity of the Collagen signature” and that it would also function as a “natural segue into prospective clinical trial validation."

Madabhushi established the CCIPD at Case Western Reserve in 2012. The lab now includes over 70 researchers and is a global leader in the detection, diagnosis and characterization of various cancers and other diseases, including breast cancer, by meshing medical imaging, machine learning and AI.

Some of the lab’s most recent work, in collaboration with New York University and Yale University, has used AI to predict which lung cancer patients would benefit from adjuvant chemotherapy based on tissue-slide images. That advancement was named by Prevention Magazine as one of the top 10 medical breakthroughs of 2018.

For more information: www.case.edu

Related breast cancer content:

How AI is Helping the Fight Against Breast Cancer

Breast Cancer AI Company Whiterabbit Receives FDA Clearance for WRDensity


Related Content

News | Breast Imaging

Feb. 16, 2026 — Rising demand for breast cancer screening and diagnostics is outpacing the supply of available breast ...

Time February 17, 2026
arrow
News | Radiology Imaging

Feb. 12, 2026 — Siemens Healthineers and Mayo Clinic are expanding their strategic collaboration to enhance patient care ...

Time February 13, 2026
arrow
Feature | Cardiac Imaging | Kyle Hardner

Advances in coronary CT angiography (CCTA) have reached the point where image quality and AI capabilities are creating ...

Time February 06, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Feb. 5, 2026 — Eyas Medical Imaging, Inc. has received U.S. Food and Drug Administration (FDA) 510(k) clearance for its ...

Time February 06, 2026
arrow
News | Ultrasound Women's Health

Feb. 5, 2026 — BrightHeart, a global provider of AI-driven prenatal ultrasound, has announced the availability of its B ...

Time February 05, 2026
arrow
News | Lung Imaging

Feb. 3, 2026 — RevealDx, a leader in the characterization of lung nodules, recently announced FDA clearance of RevealAI ...

Time February 04, 2026
arrow
News | Radiation Therapy

Feb. 4, 2026 — On World Cancer Day (02.04.26), the American Society for Radiation Oncology (ASTRO) and the European ...

Time February 04, 2026
arrow
News | Radiology Imaging

Feb. 4, 2026 — The Royal College of Radiologists (RCR) has issued its initial reaction to the British government's ...

Time February 04, 2026
arrow
News | FDA

Jan. 29, 2026 — GE HealthCare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for MIM ...

Time February 03, 2026
arrow
News | FDA

Feb. 2, 2026 — Imagion Biosystems, Ltd. has submitted an Investigational New Drug (IND) application with the U.S. Food ...

Time February 02, 2026
arrow
Subscribe Now